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Characteristics of observed bursts of single channel openings were derived recently 
for two particular ion channel mechanisms. I n  this paper these methods are generalized 
so that the observable characteristics of bursts can be calculated directly for any 
mechanism that has transition probabilities that are independent of time as long as 
the process is a t  equilibrium or is maintained in a steady state by an energy supply. 
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General expressions are given for the distributions of the open time, the number of 
openings per burst, the total open time per burst, the gaps within and between bursts, 
and so on. 

With the aid of these general results a single computer program can be written 
that will provide numerical values for such distributions for any postulated mechanism, 
given only the transition rates between the various states. 

The results are illustrated by a numerical example of a mechanism in which two 
agonist molecules can bind sequentially, and either singly or doubly occupied receptor 
ion channels may open. 

The analogous theory is also given for the case where bursts of channel openings 
are grouped into clusters; many of the results bear a close analogy with those found 
for simple bursts. 

I t  is now possible to observe the currents that flow through several types of single ion channels 
in biological membranes (Neher & Sakmann 1976; Hamill et  al. 1981). Channel types that 
have been studied include those that are opened by (a) acetylcholine-like agonists (Neher & 
Sakmann 1976; Sakmann et al. 1980), ( 6 )  glutamate (Patlak et al. 1979), (c) membrane de- 
polarization (Conti & Neher 1980; Sigworth & Neher 1980) and (d) intracellular calcium ions 
(Marty 1981 ; Pallotta et al. 1981 ; Colquhoun et al. 1981). 

In  a number of cases it has been observed that two or more ion channel openings may occur 
in quick session (the nachschlag phenomenon), with the result that channel openings are grouped 
into more or less clearly defined bursts of closely spaced openings, separated by longer shut 
periods. Such bursts may be observed in the presence of agonist alone (Colquhoun & Sakmann 
1981; Cull-Candy & Parker 1982), and also in the presence of an antagonist drug that can 
block the ion channels opened by the agonist (Neher & Steinbach 1978; Ogden et al. 1981). 
I n  a t  least one case i t  has been observed that, following several such bursts, a very long shut 
period occurs, so that the bursts of channel openings are clearly occurring in clusters (Sakmann 
et  al. 1980). Some possible mechanisms that could account for such bursts, and clusters of 
bursts, will be mentioned later, in l b, in the numerical example (S 4), and in the Discussion. 

The grouping of openings into bursts and clusters is, of course, merely a reflection of the 
existence of multiple shut (and possibly open) states, such that conventional macroscopic 
measurements of the total current flow, through a large number of ion channels, would result 
in relaxations that were not simple exponentials, but that could be described by a sum of 
several exponential terms, as discussed, for example, by Colquhoun & Hawkes (1977). 

I n  a recent paper (Colquhoun & Hawkes 1981) we have provided a basis for predicting, 
given a postulated reaction mechanism, the behaviour of single ion channels. The problems of 
interpretation of experimental data stem largely from three sources, as follows. 

(1) Although most plausible reaction mechanisms postulate several non-conducting (shut) 
states, and sometimes also more than one open state (all open states possibly having identical 
conductance), the actual observations generally show only whether the channel is conducting 
(open) or not (shut). 

(2) I n  most cases it is not known how many individual ion channels may be contributing 
to the observed record. Therefore, if two successive openings do not originate from the same 
ion channel, the duration of the shut period between them cannot be interpreted simply. 
This is a great disadvantage, because, in so far as there are more shut states than open states, 
most of the information about mechanisms should come from measurements of shut time 
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durations rather than of open time durations. I t  is this fact that is one of the main incentives 
for attempting to group observed channel openings into bursts, because there is usually good 
reason to believe that a t  least all the openings in a given burst originate from the same ion 
channel, even though the next burst may originate from a different channel. Thus the length 
of the gaps within a burst can be interpreted simply, though the lengths of gaps between bursts 
may have no simple interpretation. 

(3) I n  practice the frequency resolution of measurements will be limited; so it may be 
impossible to observe the shortest openings and gaps (see, for example, Colquhoun & Sakmann 
1981). This limitation will affect the predicted form of the distributions. For example, if 
many short gaps remain undetected, the distribution of the open time will be seriously affected, 
because two or more openings in quick succession will be counted as a single opening. The 
modifications that must be made to the present results to allow for this problem are given by 
Hawkes & Colquhoun (1983). 

Colquhoun & Hawkes (1981) considered these problems (except for the last), and gave a 
general method, applicable to any specified mechanism, for deriving the distribution of the 
length of time spent in any specified subset of states. They used these methods to derive the 
observable characteristics of bursts of channel openings (e.g. burst length), for two particular 
reaction mechanisms. These latter results were, however, not completely general, but were 
derived ad hoc for each particular mechanism; furthermore there are some mechanisms (e.g. 
those that involve more than one open state, and/or cyclic reactions) for which the appropriate 
extension of these methods is by no means obvious. I t  is our main purpose, in this paper, to 
present entirely general methods of deriving the distributions of observable characteristics of 
bursts of openings, such as the total burst length, the total open time per burst, the length of 
the kth shut period within a burst, and so on. These results will apply to any specified mechanism, 
regardless of the number of open states, or cyclic reactions (as along as the transition probabili- 
ties do not vary with time). We then show how this approach can be extended to deal with 
cases where clusters of bursts can be distinguished; the results show rather elegant analogies with 
those for the simpler burst analysis. 

In practice there is, of course, no completely unambiguous way of telling whether any 
particular shut period is within a burst or not. This problem was considered by Colquhoun & 
Hawkes (1981), who described the use of Bayes's theorem to calculate the probabilities that 
a particular shut period is part of a burst; the problem is considered here (tj 1 d )  from a rather 
different point of view. 

Throughout this paper, the term burst (rather than apparent burst as in Colquhoun & Hawkes 
(1981)) will be used to describe the observable phenomenon, defined in figures 1 and 2. 

1. BASIC A S S U M P T I O N S  A N D  D E F I N I T I O N S  

( a )  Basic definitions 

As in our previous work (Colquhoun & Hawkes 1981) the behaviour of single ion channels 
is analysed in terms of a Markov process in continuous time. Tnus it is assumed that the prob- 
ability of transition from one state to another is a constant, independent of time. For unimol- 
ecular reactions this amounts to no more than the normal postulate of the law of mass action, 
that rate constants are indeed constant (as long as variables, such as temperature and membrane 
potential, to which the rate constant is sensitive are held constant). But for association reactions, 
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for which the transition probability involves ligand concentration as well as an association 
rate constant, the Markov assumption implies that ligand concentrations do not vary with 
time, and this we assume in all that follows. 

Before discussing the methods to be used in detail, some examples will be given to illustrate 
the nature of the problem. These examples concern bursts of openings (which are analysed in 
detail later, in 3), but the same principles can be applied to the analysis of clusters of bursts 
(see $ 5 ) .  We define as k the number of kinetically distinguishable states in which the system 
can exist. To  predict the characteristics of bursts of openings it is convenient to divide the k 
states in which the system can exist into three subsets, as follows. 

(1) Subset S?' comprises the open states (kd in number, say). 
(2) Subset 93' comprises short-lived shut states (k, in number), such that any two openings 

that are separated by a sojourn in .!%l are counted as being part of the same burst of openings 
(and the intermediate sojourn in 93' is a 'gap within a burst ') . 

FIGURE 1. Diagrammatic representation of possible behaviour of a single ion channel, which has any mechanism 
that results in the occurrence of bursts of openings. The upper part shows the transitions of the system 
between the three subsets of states defined at the beginning of 3 1 (d, open states; 9, gap within burst 
states; V, gap between burst states). The lower part shows the corresponding appearance of the single channel 
current (when it is assumed, if there is more than one open state, that all have the same conductance). Two 
bursts are shown (the first with three openings and the second with two). 

(3) Subset g comprises long-lived shut states (ko in number) such that any entry into V 
results in a shut period so long that it is deemed to be part of a 'gap between bursts'. 

(4) We also define subset d = S?' U .!%l, i.e. d contains all the states in d, plus those in 37, 
k, = k, + k, in number altogether. 

(5) Similarly, we define S = U g, so that F contains all the states in 39 and %', i.e. all 
the shut states, k,: = k, + k, in number. 

An example of the possible behaviour of the system is shown in figure 1. This looks super- 
ficially like the illustrations in Colquhoun & Hawkes (1981)~ but in fact it is much more 
general; each of the three horizontal levels in figure l a corresponds with a whole subset of 
states, for any mechanism (rather than with a single state, in a particular specified mechanism, 
as in figures l and 2 of Colquhoun & Hawkes (1981). The term burst length, as defined in 
figure 1 of the present paper, is used to describe the time from the start of the first opening to 
the end of the last opening in the burst, i.e. it is an experimentally observable quantity (the 
term 'apparent burst' used to describe the same thing in Colquhoun & Hawkes (1981) is no 
longer necessary). 

First, we define a k X k matrix, P(t), with elements given by 

I&.(t) = P(sta te j  at time t ) state i at time zero), (l.1] 
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where P (  ) denotes the probability of the event in parentheses. I t  is then a standard result 
(see for example, Colquhoun & Hawkes 1977, 1981) that 

where Q is a matrix with elements qii that are (for i # j) the usual law of mass action rate 
constants for transition from state i to state j. The diagonal elements (i = j) are constructed 
such that the row sums of Q are all zero, so that qii is minus the sum of all rate constants for 
leaving state i and is therefore negative. In stochastic terms, the mass action rate constants 
are defined, for i # j, as 

qii = lim [P(in state j at time t +At I in state i at time t)/At], i # j. 
At+0 

(1.3) 

Since P(0) = I, the unit matrix, the formal solution of (1.2) is 

where the exponential function is defined in terms of its expansion, namely eQt = I +  Qt+ 
Q2t2/2 ! + . . . . 

If the system is in any state i, the probability that the next transition will be to state j, 
regardless of when the transition occurs, will be denoted n i j  and is given by 

The sum of these, over all j # i, is simply unity (the transition must be to somewhere) ; this 
follows from the definition of qii. 

The matrix, Q, of transition rates can now be partitioned according to the subsets of states 
just defined; so it will have the form 

Q,, Q,. Q.dv 
Q., Q, Q..]. (1.6) 
Q QV. QQV 

The submatrices here defined are the basis for all subsequent arguments. Some examples will 
now be discussed before proceeding with the theory. 

( 6 )  Some possible mechanisms 

Three examples will be given of possible ion channel mechanisms. The first two are very 
simple because they contain only one state in each subset, and they do not need the full 
generality of the theory; they will be convenient for illustration of the results derived in $3, 
as the results are presented. The third mechanism (1.11) is more complex and needs (almost) 
the full generality of the theory to describe its behaviour, which will be illustrated by a numerical 
example in $ 4. 

(i) A simple agonist mechanism (Castillo & Katz 1957) 

state subset: d, 

where T is the shut conformation of the receptor ion channel complex, R is open conformation, 
and A is the agonist molecule (concentration X, ) .  This is one of the mechanisms that was 
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discussed by Colquhoun & Hawkes (1981). The allocation of states to the subsets, d, B and 
%, in (1.7) is appropriate only if the agonist concentration is low, for the following reason. 
One would expect that openings could occur in bursts because, following any opening, there 
must necessarily be a sojourn in the shut but occupied state, AT (subset a). If the channel 
then re-opened (rather than the agonist molecule dissociating) a second opening would appear 
shortly after the first; the burst would consist of oscillations between states AR and AT (i.e. 
between subsets d and B according to the general scheme defined above). However, if the 
channel, while in state AT, should next lose its agonist molecule, rather than re-opening, the 
resting state, T, would be reached. If the agonist concentration is low then state T will have a 
long lifetime; so the burst will come to an end. State T therefore constitutes the subset g in 
this case. 

This example illustrates well the fact that the division of states into the subsets defined in 
5 l a is not a characteristic of the reaction mechanism alone. This division will depend on the 
particular values of the rate constants and drug concentrations that are specified. In the above 
example, the lifetime of the resting state, T, is long enough for entry into it to produce a 'gap 
between bursts ' only if the agonist concentration is low. At high agonist concentrations, openings 
would occur frequently and division of the record into bursts would not be obvious, according 
to the mechanism in (1.7). In fact Sakmann et al. (1980) did observe bursts of openings with 
high agonist concentration, but in their case the gaps between bursts were interpreted as 
involving entry into long-lived desensitized states which are not included in (1.7) (they would 
constitute subset in the present notation). In this case the states AT and T would both be 
short-lived and would constitute the gaps within a burst (subset B) .  

The matrix of transition rates for (1.7), partitioned as in (1.6), is 

In  this case k, = k,  = k ,  = 1 and all submatrices are scalar. Also Q,, = Q ,  = 0 
because the mechanism allows no direct transition between d and g. 

(ii) A simple open ion channel block mechanism 

8' ki, 
Shut + open ;===t blocked 

a k - L  

state subset: %? a2 B. 

In this mechanism, agonist binding is assumed to be fast compared with the open-shut 
conformation change, and P' is the effective rate constant for channel opening (see, for example 
Colquhoun & Hawkes 1977). The constants k+, and k- ,  represent the rate constants for associ- 
ation and dissociation of a blocking molecule (concentration xB), which can combine with 
and block the open ion channel. 

Oscillation between open and blocked states will result in the occurrence of openings in 
bursts, as long as the lifetime of the shut (as opposed to blocked) state is sufficiently long. This 
will be the case for an agonist-operated channel if the agonist concentration is sufficiently low. 
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In this case entry into the shut state (subset in general) will result in a shut period much 
longer than that produced by a blockage; so the burst of openings will end. 

The matrix of transition rates, partitioned as in (1.6) is 

Again k, = kB = k, = l, but in this case Q,g = QgI = 0 because the blocker is supposed 
to be able to react only with open channels. 

(iii) A more complex agonist mechanism 

There is a great deal of evidence that two molecules (at least) of acetylcholine are needed 
for efficient opening of the ion channels of the skeletal muscle endplate (see reviews, e.g 
Colquhoun 1979). There is also some reason to think that the channel may still be able to 
open, though with lower probability, when only one acetylcholine molecule is bound (Colqu- 
houn 1973 ; Dionne et al. 1978; Colquhoun & Sakmann 1981). The simplest mechanism that 
fulfils these criteria is 

state subset : T 

There are two open states (k, = 2), via either of which a particular opening may start, 
and end. Also there are two states in 9, via either of which a 'gap within a burst' may start, 
and end. To cope with this the full generality of the theory is needed, except that there is only 
one state in g, and it cannot be reached directly from the open state; so Q,, = Q, = 0 
(this would not be so, for example, for the full Monod-Wyman-Changeux model, in which 
an unoccupied but open species, R, appears). This mechanism will be considered in detail 
later ($4). 

(c) Theoretical background 
(i) General theory 

The crucial step for all that follows is the derivation of probabilities analogous with pij(t), 
defined in (1.1), but such that the system remains within a specified subset of states, J$ say, 
throughout the time from 0 to t. These will be defined as 

&pij(t) = P(system remains within d throughout time 0 to time t, 

and is in state j at time t I in state i at time O), i E d .  (1.12) 

The addition rule of probability implies that 

,pij(t+At) = (P[system in d throughout (0: t) and state k at t I state i at time 0] 
k€, 

xP(s ta te ja t t+At  Is ta tekat t ) ) ,  i , j ~ d .  (1.13) 
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The first factor is, from (1.12), simply ,pi,(t). The second factor, from (1.3), is (if j # k) 
qlCjAt+o(At), where o(At) is a term that represents the possibility of there being more than 
one transition in At; it disappears when At is small enough (see, for example, Colquhoun 1971, 
Appendix 2). For the case j = k the second factor represents the probability that the system 
does not move out of k during At, i.e. 1 -P(leave k) = l +q,,At+o(At). Thus (1.13) can be 
written in matrix notation as 

where P,,(t) is defined as the (k, X k,) matrix with elements defined in (1.12), and Q,, 
is the submatrix of Q, defined in (1.6) and exemplified in (1.8) and (1.10). Note, however, 
that P,,(t) is not simply a submatrix of P(t). If (1.14) is rearranged, and the limit At -+ 0 
is taken, we find 

dP.&dt)/dt = Psu( t )  Q,,, (1.15) 

the solution of which gives our required probabilities (1.12) in 

Exactly analogous relations obviously hold for any other subset. The Laplace transform of 
P,,(t), which will frequently be needed, is, from (1.16), 

PS, (S) = (sI - Q,,) -l. (1.17) 

where S is the Laplace variable which has the dimensions of frequency. 

We now wish, as in Colquhoun & Hawkes (1981), to define a density that describes the 
probability of staying within the subset of states d for a time t and then leaving d for a state 
outside x2 (in subset g, say), i.e. 

gij(t) = lim [P(stay in x2 from time 0 to time t, and leave 
At+O 

d for state j between t and t +At I in state i at time O)/At], i E ,  E .  (1.18) 

It  follows from (1.13) and (1.12) that when we add the probabilities for the routes from i to j 
via each possible intermediate state, r, we get 

In matrix form, gij(t) are, therefore, simply the elements of the k, X kB matrix 

The Laplace transform of this, from (1.17), is 

with elements g;(s), say. It  follows from (l. 18) that the integral of gij(t) gives 

l:gij(t) dt = P(1ife within d G t and exits to j 1 starts in i). 
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Note that gij(t) is not, itself, a proper probability density function (p.d.f.) because it has not 
got unit area; to achieve unit area, it must be divided by the probability that, given the system 
starts in i E d, it eventually reaches j E B, namely, from (1.22), 

Som gij(t) dt = P(exits to j I starts in i), i E d, j s B 

The second form follows from the definition of the Laplace transform; the integral of gij(t) 
in (1.23) can be found by putting s = 0 in its Laplace transform. Notice that the probabilities, 
g$(O), given by (1.23), allow for the possibility of any number of transitions within d states 
(see (1.12)) before d is eventually left for B. They give the transition probabilities from d 
states to B states. The matrix, G5,(O), with elements that are the transition probabilities, 
g;(()), will be denoted simply as G,,, throughout this paper, for brevity. Thus, from (1.21), 

and similarly, for brevity, gij = gZ(0). (1.26) 

Thus, by use of (1.25), G,, can be calculated directly from the subsections of Q defined in 
(1.6). Exactly analogous relations hold, of course, for any other pair of subscripts. 

If d contains only one state (as in (1.7) and (1.9)), then the transition probability gij is the 
same thing as nij defined in (1.5). This is because there is, in this case, no possibility of moving 
between different d states; the first transition that occurs must lead out of d. More generally, 
the gij can be written as a suitable combination of the n values, based on listing all possible 
routes from i to j. 

We can now define a probability density function for the lifetime of a sojourn in d, given 

This corresponds to the distribution function 

( t )  = fij(t) dt = P(1ife in d t I exits to j and starts in i), i E d, j E L%. (1.28) 1: 
(ii) Numerical evaluation of results 

To evaluate numerically the results derived below, we employ the spectral expansion of 
Q,, (see, for example: Colquhoun & Hawkes 1977, equations (13)-(17) ; Bailey 1964, pp. 
47, SO), namely 

k, 

Q,, = X A m ~ m .  (1.29) 
m = l  

In this expression, the p, are the eigenvalues of Q,, (which we always assume to be distinct), 
and the matrices A ,  can be calculated from the eigenvectors of Q,,. The eigenvalues and 
eigenvectors can be computed numerically (e.g. with Nottingham Algorithms Group sub- 
routine F02AGF). Throughout this paper we shall, as in Colquhoun & Hawkes (1981), always 
use the minus eigenvalues of Q,, (i.e. the eigenvalues of -Q,,), denoted h ,  = -pm.  
These are ~ositive rate constants. Once these have been found we can compute 
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It  will turn out that the p.d.fs, which are derived below, can all be expressed in the form 

where the factors that pre-multiply P,,(t) have been reduced to a single ( I  X k,) vector, b, 
and the post-multiplier is a (k, X 1) vector, c. I t  follows that the p.d.f. (1.31) can be expressed 
in the entirely scalar form 

k d  
f (t) = C w,e-'mt, 

i.e. as the weighted sum of k, exponential terms, in which the (scalar) coefficients are given by 

where b ,  ci and aiim are elements, respectively, of b, c and A,. 

(iii) Another approach 

The doubly conditional distribution in (1.27) and (1.28) is that used by Colquhoun & 
Hawkes (1981). I t  may be noted at this point that in a mechanism in which a state j E B is 
accessible from more than one d state these distributions cannot completely define the system. 
In this case one can define an alternative distribution, which defines the way in which a sojourn 
in d ends, by specifying the state in d from which exit from d occurs (rather than, as above, 
specifying the state in to which exit from a2 occurs). Thus we define, by analogy with (1.18), 

hij(t) = lim [P(stay in d from time 0 to time t, and leave d from 
At+O 

state j between t and t +At I in state i at time 0) /At], i, j E d (1.34) 

with Laplace transform denoted h$(s). The analogue of (1.23) is 

ht(0) = 1: hii(t) dt = P (exits from j I starts in i), i , j  E d. (1.35) 

Arguments analogous to those used above show that the k, X k, matrix with elements hij(t) 
is given by 

where P,,(t) was given in (1.7), and D, is a diagonal matrix with elements 

which measures the total transition rate away from a given state i, in d, to any B state. Hence 
we can define a probability density function, f&(t), that is analogous with (1.27), 

f i j  (t) = hii (t) /h$ (0) = ,pij (t) (0) , i, j E d, (1.38) 

which corresponds to the distribution function (cf. (1 .28)) 

J 0 f ij(t) dt = P(1ife in d < t I exits from j and starts in i), i, j E d. (1.39) 

The second form of (1.38) follows because dii cancels (as long as it is not zero) ; the denominator 
,&(O) is, from (1.17), simply an element of - 022. 
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(d) Dejinition of bursts in practice 

The approach, through Bayes's theorem, given by Colquhoun & Hawkes (1981) requires 
more information about the system than we will commonly possess. Colquhoun & Sakmann 

1 

(1981) defined a burst, empirically, as any series of openings separated by gaps that were all 
shorter than some specified duration, tcrit say. I t  is clear that, if tcrit were made short enough, 
every opening would be treated as a separate burst; on the other hand, if tcrit were made very 
long, the whole record would be counted as a single burst. If we suppose that the distribution 
of all shut periods in the record can be described by a p.d.f. that is the sum of several exponen- 
tial terms, 

f (t) = W ,  e-hmt, (1.40) 

say, then clearly the above procedure, which defines any shut period longer than tCrit as a 
gap between bursts, will result (on average) in division of an observed record with N +  1 

openings (and N gaps) into a number of bursts given by 

number of interburst gaps = number of bursts - 1 

= NP(shut ~ e r i o d  3 tcrit) = N w,e-Amtdt S" tcrit 
= N (wnl/hnl) e-hmtcrit. (1.41) 

A plot of the number of bursts against tCrit will therefore be a sum of exponentials with the 
same rate constants as in the original distribution of all gaps (1.40), but with amplitudes that 
are the relative areas (wn,/h,,,) of the components of the original distribution. We wish to pick 
a value for tcrit in a region such that the number of bursts that it defines is insensitive to the 
exact value chosen. But (1.41) is a monotonically decreasing curve. Adequate separation into 
bursts will be achieved only if the time constants (llh,,,) in (1.41) are so well separated that, 
once the faster components have died away, the slow components remaining are so slow that, 
on the relevant time scale, the graph of (1.41) looks nearly horizontal. In this case the exact 
value chosen for tcrit is unimportant, within this near-horizontal range. 

The definition of bursts will also be affected if some openings, and/or gaps, are too short to 
see; the modifications that must be made to the present results when the frequency resolution 
of measurements is limited are given by Wawkes & Colquhoun (1983). 

2. SOME S T A N D A R D  M E T H O D S  

It  may be helpful to those readers who are not familiar with stochastic processes if a brief 
outline is given here of some of the principles used to derive the results that follow. 

(a) Probability of occurrence of a specijied sequence of events 

First consider the sort of problem in which we are interested only in the probability of a 
particular sequence of transitions, rather than in the time spent in each state. For example we 
might wish to know the probability that a burst contains a specified number of openings. 
The simplest example (e.g. (1.7) and ( l  .g)) is the case where d and 9? each contain only one 
state (k, = ka = l), say state 1 is d, state 2 is 28. What, then, is the probability, given that 
we start in d (state l), of a transition to 9 (state 2), and then back again to d? Clearly, from 
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(1.5), we just multiply the probabilities for these two transitions to give n12n2,, or, from (1.23), 
(1.24) and (1.26), 

g12 g,,. (2.1) 

Suppose now that (as in mechanism (1.11)) there are two states in d (states l and 2 say), 
and also two states in G? (states 3 and 4 say). What now is the probability of a transition from 
d to 93 and back? T o  determine this we must specify not only that we start in d, but also the 
relative probabilities that we start in state 1 or state 2; say these are $, and #, respectively 
($, + q5, = 1 because we must start in one of the d states). Furthermore, because of the way the 
transition probabilities are defined (see (1.22) and subsequent text), they allow for the possi- 
bility of any number of transitions within d, before d is left for g. Consider first the case 
where we end up, after the sojourn in 93, back in state 1. If the sojourn in d starts in 1, then, 
after any number of transitions within d, we reach state 3 in 93, and next, after any number of 
transitions within G?, we return to state 1 (in d ) ,  then the probability for this sequence would 
be given by g,, g,,. Alternatively, if state 4 in 93 was reached rather than state 3, the probability 
for this route would be g,, g,,. Similarly, if the sojourn in d started in state 2, we would get 
probabilities g,, g,, for returning to state l after reaching state 3 (in g ) ,  and g2, g,, for the route 
via state 4. If the probabilities for the various routes are assembled by use of the addition and 
multiplication rules of probability, we find that the probability of an d -+ 93 -+ d transition 
that ends in state 1 is 

#,(g13 g31 +g14 g41) + #2(g23 g31 +g24 941) ' P 4  
This is simply the first element of the 1 X k, vector calculated as 

@ G,, G&!, 
where, in this case (k, = 2, k, = 2), 

@ = ($1 $21, 

The second element of (2.3) is easily seen to be the equivalent of (2.2), but for the case where 
we end in state 2 rather than l. The overall probability of the d + 93 -t d transition is the 
sum of these two elements (if we end in C-QI we must end in state l or state 2), namely 

where U ,  is a unit vector (k, X 1). Expressions such as (2.3) and (2.5) clearly hold however 
many states there are in d and 93, and such successive multiplication of the transition matrices 
for a specified route (d -t G? -t d in this case) is the basis of most of the following results. 

Frequently we wish to consider the probability of the occurrence of either 0, or 1, or 2.. . transi- 
tions from a2 to 93 and back. This will give rise to terms of the form (I- G,, G,,)-l, because 
(see (A 1.1)) 

( b )  T h e  duration o f  a specijied sequence o f  events 

Next, the treatment above must be extended to allow us to find the distribution of the time 
taken for a specified set of transitions. The basic results that are needed are: (a) the p.d.f. of 
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the sum of any number of random intervals is the convolution of their individual p.d.fs; and (b) 
the Laplace transform of the required p.d.f. is therefore the product of the Laplace transforms 
of the individual p.d.fs (see, for example, Cox 1962, p. 10). Consider again the simplest case, 
with one state (state 1) in d, and one (state 2) in 39. Suppose that again we are interested in 
an d+  39 +d (i.e. 1 -t 2 + l) transition, but now we wish to know the p.d.f. of the total 
time spent in the initial sojourn in state 1, and in the sojourn in state 2. The Laplace transform 
of this p.d.f. can be found by multiplying the Laplace transforms of the appropriate densities, 
and will therefore be of the form 

g& (S) g& (S) (2.7) 

(such terms may need to be divided by a suitable normalizing factor to ensure that the area 
under the final p.d.f. is unity). An alternative way to write this expression is, from (1.5) and 

(1.21), 
f m 7 7 1 2 f  a4 7721, (2.8) 

where f :(S) = ( -gll) /(S - g,,) is the Laplace transform of the p.d.f. of a single sojourn in 
state l, namely the simple exponential distribution fl(t) = (-gll) eqllt. Where there is more 
than one state in a2 and/or g, the appropriate combination of such terms is, just as above, 
most simply found by matrix multiplication (see (2.3) and (2.5)) ; so the form of the final 
p.d.f. will be (apart from a normalizing factor), 

Furthermore, if we are interested only in the time spent, say, in g, we can get the appropriate 
p.d.f. simply by putting S = 0 in the first factor, so that Gs,(s) is replaced (see (1.25)) simply 
by G,,, i.e. by the transition probabilities, regardless of time. Or, put another way, we 
integrate (see (1.23)) over all possible durations of the initial stay in d. This sort of procedure 
is used repeatedly in the following sections. 

3. T H E  A N A L Y S I S  O F  B U R S T S  

The analysis of bursts is based on the definition of the subsets of states, d, 39 and V, discussed 
at the beginning of 5 l, and on the consequent partition of the matrix of transition rates in (1.6). 

The results that are given below are all valid whether or not the various open states in d 
are distinguishable by virtue of having different conductances. If the conductances did differ 
(as in Hamill & Sakmann (1981))~ the current through the open channel could switch to 
different values during the open periods shown in figure I b; but information about the system 
from this source is ignored in the present treatment. As will be mentioned below, many results 
simplify considerably in cases where there is only one sort of open state (kd = 1). 

(a) The start of a burst 

Before proceeding we need to know about the various ways in which a burst can start (see 
52). Clearly (see figure 1) a burst must start in an open state (an d state), but, if there is more 
than one state in d, we shall need the relative probabilities of the burst starting (i.e. the first 
opening of a burst starting) in each of these sorts of open state. These probabilities are denoted 
@,, a (1 X kd) vector (the subscript b stands for burst). To calculate these probabilities we note 
that the period before the beginning of a burst is characterized by at least one sojourn in % 
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(and sojourns in V occur only between bursts) ; so we can take as our starting point the fraction 
of channels that is in each of the V states at equilibrium. These are denoted p,(co), a (1 X k,) 
vector. The number of transitions per unit time directly from V to d is pi(oo) qij, where i E V 
and j E d. To this must be added the number of indirect transitions (via any of the 9J states) 
per unit time, i.e. 

The result, in matrix notation, is thus 

The scalar denominator is merely the sum of the terms in the numerator, which is needed to 
normalize the probabilities so that their sum, @,U,, is unity. Another justification of this 
result is given later (see (3.88) and (3.89)). The result in (3.2) is rather similar to that given 
by Colquhoun & Hawkes (1981, equation (1.27)), but it is not the same. The earlier version, 
which we shall now denote @, (the subscript stands for opening), gave the probabilities of any 
opening (any sojourn in d) starting in each of the d states (see (3.63) and Appendix 1). 
On the other hand, what we want now are the relative probabilities of the first opening in a 
burst starting in each of the d states, which is what is given by (3.2). 

(i) Some special cases 

There are a number of special cases in which the initial vector, @,, can be calculated with 
less knowledge of the V states than is suggested by (3.2). These may be valuable because, in 
cases where successive bursts are not known to come from the same ion channel, detailed 
information about V states may be difficult to obtain. 

(1) Only one state in d ( k ,  = 1). I n  this case @, is scalar, and equal to unity. 
(2) Only one state in B = d U 9J that can be reached directly from V, and that state is 

in d. Then @, = (0 0 ... 1 .. . O), with the unity in the position corresponding to the accessible 
d state. 

(3) Only one state in & = d U 3 that can be reached directly from V, and that state is 
in a. Then @, is the row of G,, that corresponds with the accessible state, scaled to sum to 
unity. 

(4) Only one state in V from which & = d U 3 can be reached. Then @, is the row of 
(Qv4 Gad + Q,,) that corresponds to the V state in question, scaled to sum to unity. 

(6) The end of a burst 

A burst ends when an open period, in d, leads to a sojourn in % before another opening 
occurs (see figure 1). The route from d to V may be via an intermediate sojourn in g, or it 
may be direct. This argument allows us to assemble the probabilities for the end of burst, for 
each posiible starting state in d. These will be denoted by the (k, X 1) vector, e, (the sub- 
script stands for burst), given by 

The postmultiplication by the unit vector, U,, sums the probabilities over all V states, because 
arrival in any V state ensures the end of the burst. 
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I t  will be useful to note (see Appendix 1, equation (A 1.8)) that 

i.e. e, = (I - G,, G,,) U,. The meaning of this result is clear, especially in the scalar case; 
e, contains probabilities that, starting in d, the burst then ends, and G,,G,, contains 
probabilities of returning to d SO that the burst continues; so I - G,, G,, represents the 
probability of not continuing, and therefore of ending. 

( c )  The number of openings per burst 

Clearly there must be at  least one opening if there is to be a burst at  all, and the prob- 
ability of this first opening starting in each of the d states is given by @, (3.2). If the next 
transition leads back to %', with probabilities eb (3.3), then the burst ends after one opening 
only; so the probability of having only one opening per burst is P(1) = @,cb. If, however, 
the first opening is followed by ,transitions d + and L% + d (probabilities G,, G,,) 
there will be several openings before the burst ends (see 2). The probability of seeing r openings 
per burst is, therefore, 

I t  is clear, especially from the latter form, that this result is the matrix analogue of the simple 
geometric distribution (used, for eximple, by Colquhoun & Hawkes (1981, equation (2.3)). 
I t  follows from (3.5) that the probability of seeing at least i openings in a burst is 

The mean number of openings per burst is (see (A 1.2), (A 1.24), (3.63) and (3.4)) 

m 

E(r )  = C r P ( r )  = @,(I-G,,G,,)-lu, 
7 = 1  

= ~ / C D ~ ( I -  G,, G,,) U, = l /~D~e, .  (3e7) 

Note that l /E(r)  = @,c, is the probability that a gap is between bursts rather than within 
a burst. 

The number of gaps in a burst must always be one less than the number of openings (see 
figure 1) ; so the distribution of the gaps follows at once from these results. 

The form of the distribution, (3.5), can be clarified if we express the (k, X k,) matrix, 
G,,G,,, in the form of its spectral expansion (see (1.29)-(1.33)), namely 

where the p, are the eigenvalues of the matrix G,, G,,, which will be positive, and less 
than unity. The matrices A, can be found from the eigenvectors of GdBGBd. This allows 
us to write the distribution, (3.5), in the form 

'c, 
P ( r )  = 8, C (A,&-l)eb = C w,pLP1. 

m=l  
(3.9) 

Vol. 300. B 
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Equation (3.9) has the form of the weighted sum of k, geometric distributions, with (scalar) 
coefficients given (see (1.33)) by 

W, = GbA,eb. 

This result is not surprising in view of the fact that the geometric distribution is the discrete 
equivalent of the exponential distribution, and all the continuous distributions derived below 
are described by weighted sums of exponentials. 

(i) The case of a single open state 

In  this case (k, = l), the number of openings per burst should follow a simple geometric 
distribution (as shown for two particular mechanisms by Colquhoun & Hawkes (1981)). Also, 
both @, and U, are just unity, and both G,,G,, and e, are scalar. Thus (see (3.4)) 

with mean E ( r )  = 1/(1- G,, G,,) = l/e,. (3.12) 

If there is also only one 9 state, then GdBGBd = T,,T,,. 

(ii) Distributions conditional on starting state 

The probability of r openings per burst, given that the burst starts in the ith open state, is 
simply the ith element of the (k, X 1) vector found by omitting the CD, from ( 3 4 ,  i.e. 

with a corresponding vector of means 

These distributions will not be directly observable (unless the various open states are dis- 
tinguishable by virtue of having different conductances). Nevertheless, they may be helpful in 
providing intuitive understanding of the behaviour of a mechanism, as is exemplified later 

($4)- 

(iii) Simple examples 

For the simple agonist mechanism, (1.7), G,, = 1 because a? can go only to a, and G,,, 
from (1.25), is - QG& Q,, = /?/(P + k-,). SO, from (3.11) and (3.12), the number of openings 
per burst follows a geometric 'distribution with mean 1 +/3/k-, (as found by a different route 
in Colquhoun & Hawkes (1981)). 

For the channel block mechanism, (1.10), G,, = k+,x,/(a+ k+,x,) and GBLd = 1; SO, 

from (3.11) and (3.12), the number of openings per burst is geometrically distributed with 
mean 1 + k,, xB/a, i.e. 

mean number of gaps per burst = k+,x,/a. (3.15) 

( d )  The burst length 

We are interested now in the length of time spent in the burst; so the appropriate densities, 
for various routes through the burst, must be convolved (as outlined in $2). The probabilities 
for various routes through the burst are as already found in (3.5). The burst may consist of any 
number (1, 2, . . ., co) of openings and so we must sum over these possibilities, but with s not 



B U R S T S  O F  I O N  C H A N N E L  O P E N I N G S  19 

set to zero for the periods in d and B that constitute the burst. The Laplace transform of the 
required p.d.f. is therefore 

Note that the last term is the same as the 'end of burst' vector, e, (eq. (3.3)), except that the 
last period in d (but not that in g, if any) is part of the burst, so that we do not set s = 0 
in these terms. The transform is not directly invertible as it stands, but it is shown in appendix 1 
(A 1.32) that inversion gives the p.d.f. as 

where P,, = exp(Q,,t), the subset 8 being defined as d U  B (fjla). This p.d.f. can be 
evaluated from the spectral expansion of P,,(t), as described in (1.29)-(1.33). I t  will consist 
of the sum of k, = k, + k, exponential terms with rate constants that are the eigenvalues of 
- Q,,, but the coefficients (1.33) will still be found by summing over i E d ,  j E d ,  because 
only the d subsection of P,,(t) (see (A 1.31)) is used. The form of (3.17) is, intuitively, very 
reasonable; [P,,(t)],, is the submatrix of P,,(t), consisting of the rows and columns of P,,(t) 
that correspond to the states in d, and it gives the probability of remaining within the set of 
states & = d U a throughout the time from 0 to t, starting in d and being in d at time t. 
This is multiplied by 

- Qddeb = ( Q&, Gaw + Q&,) u.e, (3.18) 

which is the transition rate out of d into V? (possibly via 39). The appearance of - Q,, in 
(3.17) bears a direct analogy with the simple exponential distribution (see (3.64)). The mean 
burst length is 

m = @b(I-G,,G,,)-1(-Q2L)(I-Q,,Q~kG~d)Ud. (3.19) 

This is, of course, the sum of the mean open and gap times per burst which are derived below 
in (3.26) and (3.41). 

(i) Distributions conditional on the starting state 

Again, the distributions of burst length, conditional on the burst starting in the ith open 
state, are the elements of the vector found simply by omitting the initial vector, Qb, from (3.16) 
or (3.17). The corresponding vector of means is found by omitting from (3.19). 

(ii) The case of a single open state 

In  this case the mean burst length, from (3.19) and (3.4), reduces to 

For example, in the simple channel block mechanism, (1.9), for which GB, = 1 and G,, = 0, 
the mean burst length becomes 

m = (1 + x d K d  1% (3.21) 

where K, = k-,/k+, is the equilibrium constant for blocker binding. This result was given by 
Neher & Steinbach (1978). 
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(e) The total open time per burst 

I n  this case the possible routes through the burst are just the same as in (3.5) or (3.16), but 
now we are interested only in the time spent in open (d) states, not that spent in shut (a) 
states. Therefore, for the reasons outlined in $2, we simply modify (3.16), by setting s = 0 

in the term Gz,(s), because this term, which, from (1.21), is P$,(s) Qad, represents time 
periods in a. Laplace transform of the required p.d.f. is therefore 

This, as in the last section, cannot be inverted as i t  stands, but after rearrangement, with the 
aid of ( l . l7) ,  (1.21) and (3.3), the required p.d.f. is found as 

The second form of (3.23) is derived from (3.3) and (3.4), which show that 

The p.d.f. in (3.23) is a direct matrix analogue of a simple exponential distribution (which 
has the form he-"), with a 'rate constant' of - V&,. The p.d.f. can be evaluated as the 
weighted sum of k, exponential terms, with rate constants that are the eigenvalues of - V,,, 
and coefficients that can be found by direct analogy with (1.29)-(1.33). 

The mean of this distribution, i.e. the mean total open time per burst, is 

The first expression for the mean is seen to be the mean open time (from (3.62)) multiplied 
by the mean number of openings per burst (from (3.7)). The second expression is a direct 
matrix analogue of the mean of a simple exponential (which is h-l). 

The distributions conditional on which state the burst starts in can be found, as in previous 
sections, by omitting @b from (3.23) and (3.26). 

This case (and the next) are rather unusual in that they involve eigenvalues of a matrix 
( - V,, here) that is not a simple submatrix of Q. However the form of the result can be seen 
to be intuitively reasonable by consideration of the following example. 

(i) A simple example 

Consider the channel blocking mechanism defined in (1.9) and (1.10). I n  this case the 
total rate of leaving the open state is - Q,, = cr. + k+,x,, the reciprocal of which is the mean 
lifetime of a single opening. In  other words (apart from remainder terms, see (1.13) and (1.14)) 
the probability of leaving a.?' (for either 98 or V )  during At is - Q,,At = ( ~ l + k + ~ x * )  At. 
Imagine, now, that a clock is started a t  the beginning of the first opening in a burst, and that 
the clock is stopped while the channel is blocked, and started again when the channel re-opens. 
We are interested in the time shown on the clock when the channel finally shuts (as opposed 
to blocks) because this will be the total open time per burst. As far as the time shown on the 
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clock is concerned, the transition rate for leaving &' is not - Q,,; to allow for the fact that 
the channel may block, rather than shut, during At we must subtract, from - Q,,, the rate 
of transition to the blocked state, Q,, (i.e. k+,xB in this example), times the probability, 
Gad, that, having blocked, the channel eventually re-opens, so that the burst continues (in 
this example G,, = 1 because there is no other way out of the blocked state except for re- 
opening). Thus, instead of - Q,,, we have 

( - Q&,) - Q,, G,, = - v,,. 
This justifies the form of V&, (3.24). In the present example 

Therefore, since @, = 1 and U, = 1, the distribution of the total open time per burst is, 
from (3.23), 

f ( t )  = a e-at, (3.29) 

i.e. a simple exponential distribution with mean lla. This is of course exactly the same as 
the distribution of the open lifetime in the absence of the channel blocking drug, as was first 
noted by Neher & Steinbach (1978). During the time that the clock is running the probability 
of the channel shutting (as opposed to blocking) during At is a At; this ensures that the time 
shown on the clock when shutting eventually occurs, which will be the total open time per 
burst, will be exponentially distributed with mean lla, as found in (3.29). 

(ii) The case of a single open state 

In this case @, = 1, and Q,, = g,, is scalar, as is - V,, = -gll - Q,,G,,. Therefore 
the distribution of the total open time per burst becomes the simple exponential p.d.f., 

with mean m = - 1/V,, = - l/gll e, = (mean life in d) /e, 

= l /  (Q,, G,, + Q,,) ug- (3.31) 

Some interesting conclusions follow directly from these results. For example, notice that 
Qdvu, is the total transition rate from a2 to g ;  if there is only one route from d to V, with 
rate constant a say, then Q,,u, = a. The mean open time per burst would then become 

H = l / (a+ Q,,Gavuv), (3.32) 

i.e. it  is less than l / a  to an extent that depends on the rate of shutting via 3. If shutting via 
94 is impossible (as, for example, in some channel block mechanisms for which GgV = 0) then, 
regardless of how many states there are in g and g, the mean open time per burst becomes 
simply m = lla. (3.33) 

This result is invoked by Neher (1983)~ and by Ogden et al. (1983). 

(f) The total shut time per burst 

The distribution of the total length of all the gaps between openings, within a burst (see 
figure l), can be found by modification of (3.16) in a manner exactly analogous to that used 
to find the total open time per burst, in (3.22). This time we are not interested in the open 
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times (times spent in d)  ; so we set s = 0 in the terms that represent periods in d (i.e. in G,, 
and G,,), according to the principles that were outlined in $2. The Laplace transform of 
the required p.d.f. is therefore 

where eb was defined in (3.3). After some rearrangement, this can be written as 

where we define (3.36) 

Inversion of (3.35) gives the p.d.f. as 

where S( t )  is a delt'a function (i.e. a spike with unit area, but withinfinite height andinfinitesimal 
width) at time zero. This first term simply represents all those bursts that have only one opening, 
and which therefore have identical (zero) total gap time per burst; from (3.5) the probability 
of a burst having one opening (and therefore no gaps) is P(1) = @beb, which, from (3.37), is 
exactly the area under the spike part of the p.d.f. I t  may be convenient in practice to look at 
the distribution of total gap time per burst for only those bursts that have at least one gap 
(i.e. at least two openings). This is given simply by the second term in (3.37) or (3.38), divided 
by the probability that there are at least two openings, i.e. from (3.6), 

This p.d.f., and that in (3.38), can be expressed as the weighted sum of k, (the number of 
states in 93') exponential terms, with rate constants that are the eigenvalues of - WBa, and 
coefficients that can be evaluated by direct analogy with (1.29)-(1.33). 

The mean shut time per burst, from (3.37), is 

This mean includes all those'bursts with zero shut time (only one opening). When these are 
excluded, as in (3.40), the mean becomes 

I t  may be noted that all these results for the total shut time per burst bear a close analogy 
to those just found for the total open time per burst, and they can be rationalized in an exactly 
analogous way. 

The distributions conditional on the particular open state (the ith say) in which a burst 
starts are given simply by omitting @, from (3.38) and (3.41) ; in the case of the conditional 
results (3.40) and (3.42) the ith distribution needs to be normalized, not by P(r  3 2), but by 
1 -ei, where ei is the ith element of e,. 
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(i) The case of a single state in .B 

Simplified results can be found if the gaps within a burst consist of a sojourn in a single 
state only. I n  this case W,, is scalar, and the p.d.f. in (3.38) and (3.40) become simple 
exponential distributions. The mean shut time per burst becomes, from (3.39) and (3.41), 

and the corresponding mean for bursts that have at least one gap is therefore, from (3.42) 
and (A 1.9), 

m' = l / ( - WBa) = (mean life in 33') /(G,, G,@ + G,,) U, 

This last result shows, for example, that if there is only one direct route from 99 to V, with rate 
constant k-, say, then the total direct transition rate from .B to g, Q,g~q,  is simply kW,, and 
m' is therefore less than Ilk-, to an extent that depends on the transition rate for the indirect 
route from to V via d. If the latter route is impossible (as, for example, in the simple agonist 
mechanism discussed below), then the mean gap time per burst for bursts with at least one 
gap, m', becomes simply l/k-,. 

(ii) Simple examples 

For the simple agonist mechanism (1.7) and (1.8), Q,v = 0, G&, = l, and G,, = 

P/(P+k-l); so, from (3.39), P(r  2 2) = P(P+k-,), and from (3.44), - W@@ = Q1, = k-,. 
The mean shut time per burst is therefore 

as given by Colquhoun & Hawkes (1981). But the mean shut time per burst for bursts that 
have a t  least one gap is, from (3.44), simply 

For the simple channel block mechanism, (1.9) and (1.10), we have G,, = 1, and 
G,, = k+,x,/(a +k+,x,) = P(r  3 2), from (3.39). Also - W,, = ak-,/(a + ktlxB) ; SO the 
mean shut time per burst becomes 

m = (xB/KB)/a, (3.47) 

where K, = k-,/k,, is the equilibrium constant for antagonist binding. Similarly 

(g) The length of individual openings 

When we consider the distribution of the length of a single opening, a complication, which 
is unexpected at first sight, is encountered if there is more than one open (d) state and more 
than one state in g (gaps within burst). We have obtained, in (3.2), the probabilities that a 
burst starts in each of the &' states, i.e. that the first opening of a burst starts in the specified 
state. But, in general, the probabilities that the second opening of the burst starts in each open 
state may be different; they will depend on how the previous opening ended. For example, in 
the mechanism discussed in detail later (see 94), the probability that the second opening starts 
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in A,R rather than in AR will clearly be greater if the first opening ended with an A2R -+ A2T 
transition than if it ended with an AR -t AT transition. Thus we expect that, in general, the 
distribution of the length of the kth opening in a burst that has r openings will depend on both 
k and r. These distributions will be discussed first, then their equivalent when we average over 
different burst lengths and position within the burst. 

(i) Distribution of the kth opening in a burst with r openings 

We proceed as in previous sections, according to the principles outlined in $ 2 .  For all 
openings but the last, the following argument can be used. The kth opening, the duration of 
which we want to investigate (hence the G&(s) term), must be preceded by k - l openings, 
and k - 1 gaps, the durations of which are irrelevant; so we set s = 0, giving the (G,, G,,) k-l 

term. The kth opening will then be followed by a further r - k gaps and r - k - l openings, the 
durations of which are again irrelevant; this takes us up to the start of the last opening, which, 
since, it is the last, gives rise to the end vector, e,, defined in (3.3). Thus the Laplace transform 
of the required p.d.f. is 

where P(r)  is the probability that a burst contains r openings, given in (3.5). This scalar 
denominator is necessary so that the total area under the p.d.f., f *(O), is unity, as is seen by 
setting s = 0 in (3.49), and using (3.5). The last opening in a burst, unlike earlier openings, 
may terminate by a transition directly to %; so its distribution can be found from 

Although the separate forms, (3.49) and (3.50), just given are those with the most obvious 
derivation, both can be encompassed in the single equation 

I t  may be noted that the first part of (3.49)-(3.51), @,(G,, G,,)k-l, is a vector that gives 
the relative probabilities of the kth opening in the burst starting in each a2 state, just as @b 

(to which it reduces for k = 1) does for the first opening. 
Inversion of (3.51) gives the p.d.f. as 

This can be expressed as the sum of k, exponential terms, with rate constants that are the 
eigenvalues of - Q,,, and coefficients that can be found by direct analogy with (1.29)-(1.33). 

The mean open time is 

m = ab(Gda G,,) k-l ( - Q;L) (G,, G,,)r-ke,/P(r), k G r. 

These distributions are symmetrical in time for any mechanism that obeys the principle of 
microscopic reversibility (see below). This time symmetry means that the first and last openings 
in a burst have the same distribution (and hence the same mean length), the second and the 
next-to-last openings have the same distribution (which is, in general, different from that of 
the first and last openings), and so on. This time-reversible behaviour is the stochastic conse- 
quence (see Kelly 1979) of the principle of microscopic reversibility, or detailed balance 



B U R S T S  O F  I O N  C H A N N E L  O P E N I N G S  2 5 

(Onsager 1931; Tolman 1938; Denbigh 1951). This principle states that at equilibrium the 
transition rates for every individual reaction step are the same in both directions, i.e. 

P,(") P.ij = Pj('Q) qji. (3.54) 

This result implies that, for any cyclic mechanism (see $4, for example), the product of the 
rate constants going one way round the cycle is equal to the product going the other way 
round; if states 1, 2, . . ., n are arranged in a cycle so state 1 is connected to state n, then 

This principle must be obeyed by any reaction mechanism that can attain true thermodynamic 
equilibrium. I t  should, however, be stressed that all of the results derived in this paper (except 
for the time-reversible behaviour mentioned above) assume only that the system is in a steady 
state, not necessarily that it is in true equilibrium. The results are equally valid for irreversible 
processes, as long as the process is maintained in a steady state by means of a supply of energy. 

If there is only one open state all of these complications disappear: (G,, GBd) and eb are 
scalar and so factor out; all openings have the same simple exponential distribution given 
below in (3.66), regardless of k and r. 

Various other distributions can be found from these results. For example the distribution of 
the length of the last opening in a burst would result from setting k = r in (3.52), multiplying 
by P(r), and summing over all numbers of openings (r = l ,  2, . . ., m), which gives 

(ii) Distribution of the kth opening in u burst (regardless of r )  

I t  may also be of interest to ~red ic t  the distribution of the kth opening in a burst, regardless 
of how many openings there are in the burst. The distribution in (3.51) was conditional on 
the burst having r openings; we therefore, from the rules for conditional ~robability, multiply 
it by P(r) and sum over all possible values of r, i.e. r = k, k + 1, . . ., co (k can obviously not be 
greater than r, so r k). The result (see also (3.4)), when properly normalized, is 

f * (S) = @ b  (Gda Gad) k-l '2.d (S) ( - Q&'&) ~ d / @ b  GB&) k-l (3.56) 

The denominator in this is, from (3.6), the probability that a burst will contain at least k 
openings. Inversion of the Laplace transform gives the required p.d.f. as 

This p.d.f. can be expressed as the sum of k, exponential terms, with rate constants that are 
the eigenvalues of - Q,,, and coefficients that can be found as in (1.29)-(1.33). The mean 
open time for the kth opening in a burst is 

m = @,(Gd, G,d)k-l ( - Q22) ~ d / @ b (  GdB k-lud. (3.58) 

When there is only one open state, again the complications disappear and the above results 
reduce to the simple overall exponential distribution given in (3.66), regardless of k. 

(iii) Overall distribution of the length of an opening 

To obtain the overall distribution of all open times, regardless of any possible grouping into 
bursts, we can simply multiply (3.57) by the probability of getting at least k openings per burst, 
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and sum over all possible values of k (i.e. k = 1, . . ., a). Alternatively we can start directly 

from the p.d.f. in (3.52) that depends on both k and r, fk,,(t) say, and calculate 

Either route, when properly normalized, gives 

where E(r)  is the mean number of openings per burst, given in (3.7), i.e. 

The overall mean open time is, therefore, 

This is simply the mean open time per burst, from (3.26), divided by the mean number of 
openings per burst. 

Alternative results for the distribution of open times were given by Colquhoun & Hawkes 
(1977)~ who presented a method for calculating the p.d.f. of the lifetime in any specified subset 
of states. I n  that work, grouping into bursts was not considered and so i t  was natural to use an 
initial vector, @, (see Appendix l ) ,  that gave the probability of each opening starting in a 
specified open state; all shut states were grouped into one subset, which was denoted 7, but 
which we here denote as F = 9 U %. In  the present notation, equation (65) of Colquhoun & 
Hawkes ( I 977) becomes 

@, = p,k@ Q,-,/P,(~ Q9,ud. 

The relation between Qi, and @, given in appendix l, (A 1.24), shows that the overall distri- 
bution of open times, (3.60), can be written as 

which is a direct matrix analogue of a simple exponential distribution, and is identical with 
equation (66) of Colquhoun & Hawkes (1977). Similarly the overall mean open time, (3.62), 
can be written 

m = @,( - Q2l,) U,. 

For a single open state, (3.6.4) and (3.65) become simply 

f (t) = - qlleq" t ,  (3.66) 

an exponential distribution with mean, for example, of l/a for the simple agonist mechanism 
(1.7), and l /  (a + k+,x,,) for the channel block mechanism, (1 .g). 

(h) Shut periods (gaps) within bursts 

As with open times (see 3g), the distributions of the first, second, . . ., gaps within a burst 
may not be identical, if there is more than one open (d) state, and more than one gap (B) 
state. Again this happens because the way in which a gap starts may depend on how the pre- 
ceding opening ended, which, in turn, may depend on how the previous gap ended. 
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(i) Distribution of the kth gap in a burst with r openings 

The Laplace transform of the required p.d.f. is found by exactly the same sort of reasoning 
as for the corresponding open time distribution (3.49). In this case, however, we are interested 
in the time spent in the kth gap (93 states; see figure l), rather than the time spent in the kth 
opening; so the central term becomes (see $3) G,,Gg,(s) rather than G~,(S) G,,. Thus 
we obtain 

where P(r)  is the probability that a burst has r openings (and therefore r - l gaps) from (3.5). 
There is no need for a separate expression for the last gap because the last gap ends in exactly 
the same way as any other, with a transition to one of the open states. As in (3.51) inversion 
is straightforward, and gives (see (1.21)) the p.d.f. of the duration of the kth gap in a burst 
with r openings as 

f (t) = @,(Gd1 G,&) k-l G,, P,,(t) QBd(Gd@ Gad)T-k-leb/P(r)y ii- = 1, . . ., r - 1. (3.69) 

This, like the other distributions of gaps within bursts, can be expressed as the sum of k, 
exponential terms, with rate constants that are the eigenvalues of - Q,,, and coefficients 
that can be found as in (1.29)-(1.33). The mean length of the kth gap in a burst with r 
openings is 

m = @,(G,, GB,) '-l G&,( - Q&) G a d ( G d ~  G ~ , ) ~ - ~ - ~ e b l P ( r ) .  (3.70) 

These results show the same symmetry in time as the openings do, and for the same reason 
(described following (3.53)). 

If there is only one state in 9, then @,(G,,GBd)"-IG,, and Q,,(Gd,GyJl,)r-k-leb 
are both scalar and so factor out of (3.69) and (3.70), leaving the simple exponential distribu- 
tion of gap times given in (3.80) and (3.81). Ifthere is only one open (d) state then @,, G,, G,, 
and e, are scalar and therefore factor out, giving the overall intraburst gap distribution specified 
in (3.78) and (3.79). In  both of these special cases the distribution become the same for all 
gaps within a burst, regardless of k and r. 

(ii) Distribution of the kth gap in a burst (regardless of r )  

The distribution of the duration of the kth gap within a burst, regardless of how many 
openings the burst may contain, can be found by similar reasoning to that used for (3.56). 
The result, which is conditional on r (3.68), is multiplied by P(r)  and summed over all possible 
r values, i.e. r = k + l, . . ., co (because a burst with r openings has r - l gaps, and so k < r - l, 
i.e. r 2 k+ 1). The Laplace transform of the p.d.f. is therefore 

This follows from (3.4). The denominator is chosen to ensure that the area under the p.d.f., 
f *(O) (see (1.23)), is unity; it is, aswould be expected, the probability that a burst will contain 
at  least k gaps (from (3.6)). Inversion of (3.71) gives the p.d.f. as 
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The mean duration of the kth gap is given by 

If there is only one state in either d or B', the dependence on k disappears and (3.72) 
reduces to the corresponding overall results, (3.78) and (3.80) respectively. 

(iii) Overall distribution of gaps within bursts 

To  obtain the overall distribution of all gaps within bursts we can multiply (3.71) by the 
probability that a burst contains at least k gaps, and sum over all possible k (k = 1, . . ., m). 
Equivalently we can start from the p.d.f. that depends on both k and r, fk,,(t), from (3.69) 
and calculate 

cn r - l  a, 

C C fk,r(t)P(r) = C 5 f k , r ( t )  p(r)-  
r=2  k = 1  I c = l  r = k + l  

Either approach gives, when properly normalized, 

where the denominator is one less than the mean number of openings per burst, i.e. it is the 
mean number of gaps per burst, from (3.7), 

The overall mean length of gaps within bursts is, therefore, 

If there is only one open state (k, = 1) the p.d.f., (3.75), reduces to 

If there is only one state in B', state j say, the p.d.f., (3.75), reduces to the simple exponential 
distribution 

f ( t )  = - qjj eWt, (3.80) 

with mean m = l / ( -qjJ .  (3.81) 

(i) Shut periods between dursts 

The gap between bursts, defined in figure 1, starts as soon as the last opening of a burst ends, 
and includes at least one sojourn in V. Obviously experimental measurements of this quantity 
will have the following distribution only if all bursts originate from the same individual ion 
channel. If we leave aside, for a moment, the question of defining how the gap starts, it is clear 
that, once V has been reached, any number (0, . . ., m) of oscillations V + -t V may occur, 
and will be part of the gap (see figure l), thus giving rise to a term [ I -  G$,(s) GgV(s)]-l 
(see (2.6)) ; the gap may then end by transition from V to d either directly or via B'. In  the 
latter case the last sojourn in 93' is part of the gap between bursts; so the final term in the p.d.f. 
will be [G&(s) Gg,(s) +G;,(s)]u,. These terms must be preceded by an initial section 
that takes account of how V was reached, and two approaches to this are possible. 
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First, we can start, as in all other cases so far, from the beginning of a burst (in this case, 
the burst that precedes the gap of interest). The various routes through this burst will be 
described by terms like those in (3.16), except that in this case we are not interested in the 
time spent in the burst (so we put s = 0 in 3.16), but we are interested in any time that may 
be spent in 93 following the last opening of the burst, and so G,, in (3.16) is replaced by 
G,&(s). This argument gives the Laplace transform of the p.d.f. as 

The latter form involves the k, X k, submatrix that consists of the last k, rows of G$,(s); 
this form follows from (A 2.7)-(A 2.9). 

The second approach is to reverse the argument used to obtain (3.2), which describes the 
ways in which a burst starts, to obtain a similar description of the start of a gap between bursts. 
In the former case, we noted that each burst was preceded by a period in W, and that periods 
in %? occurred only between bursts; so we started with the equilibrium fraction of the system 
in each V state, denoted pv(co). Similarly we now note that a gap between bursts must be 
preceded by an open (d) period and that open periods cannot occur within a gap between 
bursts; we therefore now take the equilibrium fraction in each open state, p,(co), as the 
starting point, and look at the transition rate into V, possibly via 93 (in which case the sojourn 
in 93 is part of the gap between bursts). This argument, when properly normalized, gives 

and 9 = 93 U %? (the latter form can be derived by arguments similar to those in Appendix l). 

This result can be shown to be identical with (3.82). Both of these expressions are rather 
lengthy, but it can be shown that inversion of these Laplace transforms gives a much simplcr 
and more elegant form for the p.d.f. namely, 

f (t) = Yg[Q,,- P,,(t) Q,, - Q,, P,,(t) Q,,] U, 

= yg[Q,,- exp(Q,,t) ( - Q,,-) G,, - Q,, ~ X P (  - QaaO ( - Q B ~  G ~ I u l s l ,  (3.85) 

where 9 = 93 U %? contains all the shut states. This form is intuitively very reasonable; the 
numerator measures the duration of all sojourns in 9 (first term), except for those that are 
spent entirely within &? (second term), and are therefore gaps within bursts rather than gaps 
between bursts. 

The mean length of the gap between bursts is 

m = Yg[Q,,( - Q&) G,-& - Q&m( - Q G ~ )  GB,] 21,. (3.86) 

The p.d.f. (3.85) can be expressed as the sum of k,+k, exponential terms. Of these, k,- 
terms have rate constants that are the eigenvalues of - Q,,, and coefficients, derived as in 
(1.29)-(1.33), from the eigenvectors of Q,,. The other k, terms have rate constants that 
are the eigenvalues of -Q,,, and coefficients, derived as in (1.29)-(1.33), from the eigen- 
vectors of Q,,. 
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A special case of interest concerns mechanisms in which direct transition from to '3 and 
back is impossible (e.g. the simple channel block mechanism, (1.9)). I n  this case (3.85) reduces 
to 

f (t) = P,(w) Q.aPaa(t) ( - QQQ) U Q I P ~ ~ )  Qdeua. (3.87) 

The gap between bursts must, in this case, consist (as is clear from inspection of figure 1) of a 
single sojourn in '3. I n  this case, several of the exponential terms in (3.85) have zero coefficients, 
and we are left with ke exponential terms with rate constants that are the eigenvalues of 
- Qaa, as is clear from (3.87) and (1.29)-(1.33). That (3.87) is the p.d.f. for the length of a 
single sojourn in % also follows directly from the results of Colquhoun & Hawkes (1981). 

(i) Another view of the initial vector (lib 

I t  may be noted at this point that, if we set S = 0 in the central section of (3.82), we obtain 
a (k, X k,) matrix, Zdd say, of transition probabilities that describe the routes from the start 
of one burst to the start of the next burst. This is 

Since (lib, as derived in (3.2), describes the probability that a burst will start in each of the d 
states, we expect that (lib should be the same for each burst. This is so because it can be shown 
(by methods similar to those used in Appendix 1) that 

( j )  The distribution of all shut times 

I t  is of interest to compare the distribution of all shut times, both within and between bursts, 
with (3.85). This can be obtained directly from equations (1.24), (1.27) and (1.28) of Colquhoun 
& Hawkes (1981)~ which give the p.d.f. of the lifetime in any specified subset of states. The 
subset of interest now is the subset, 9, of all shut states, and its complement is d, which 
contains all open states. The required p.d.f. is therefore 

the sum of k, exponential terms, with rate constants that are the eigenvalues of - Q,,-, 
and coefficients that can be found as in (1.29)-(1.33). The mean shut lifetime is 

(i) Inferences about bursts from the distribution of all shut times 

The distribution of all shut times, in (3.90), is a weighted combination of the distribution 
of shut times between bursts, (3.85), a i ~ d  of the distribution of shut times within bursts, (3.75). 
The weights are, respectively, B and 1 -B, where 8 = l /E(r)  is (see (3.7)) the probability 
that a gap is between, rather than within, a burst. When this combination is formed it is 
found that the terms with rate constants that are the eigenvalues of - Q,, in (3.75) cancel 
exactly with the corresponding terms in (3.85). Thus the result, the distribution of all shut 
times (3.90), has only terms with rate constants that are the eigenvalues of -Q,-,. This is 
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illustrated numerically at the end of $4. It  follows that the p.d.f. of all shut times, (3.90), can 
be written as 

f (t) = 8 ( - QggF terms of p.d.f. of gaps between bursts). (3.92) 

If the entire observed record comes from the same ion channel it is, in principle, neither 
necessary nor desirable to attempt to discriminate bursts of openings; the inferences should be 
made directly from the distributions of all shut times, and of all open times. Nevertheless the 
problem of inference is certainly easier if we can deal with submatrices of Q that are as small 
as possible, and so even when all observations are from one channel it may be thought desirable 
to attempt to infer the characteristics of shut periods within, and between bursts of openings, 
by inspection of the p.d.f. of all shut periods. However, such inferences cannot be exact. The 
rate constants for the p.d.f. of gaps within bursts are the eigenvalues of -Q,,, but these 
will not, in general, be the same as the rate constants for the faster components of the distri- 
bution of all shut times, because the latter has rate constants that are the eigenvalues of - Qg, 
(i.e., since F = 93' U U, they involve U states as well as 93' states). Similarly the area under the 
slowest component(s) of the distribution of all shut times cannot, in general, be equated with 
the fraction (denoted B above) of gaps that are between rather than within bursts. Nevertheless, 
in particular cases the inferences of the length and number of intraburst gaps from the distri- 
bution of all shut periods may be a good approximation, as in the example discussed in $4 
(see (4.25)-(4.28)). For example, if the distribution of the gap between bursts, j i ( t )  say, is well 
approximated by a single exponential term, with a rate constant that is an eigenvalue (h, say) 
of - Q,,, then this distribution will be approximately of the form 

fb (t) W hl e-l\l t. 

Thus, from (3.92), the term with this rate constant in the distribution of all shut times will 
have a coefficient, W,, say, of 

W, z BA,. (3.94) 

Therefore the area under the slow component of the distribution of all shut times, w,/h,, will 
be approximately 0 the fraction of all shut times that are between bursts rather than within bursts. 

4. A NUMERICAL E X A M P L E  

(a) The mechanism and its parameter values 

The general results for analysis of bursts, which were derived in the preceding section, will 
now be illustrated by the mechanism that was introduced in (1.1 l). In this mechanism, two 
agonist molecules (A) can bind to the shut (T) conformation, and either singly or doubly 
occupied receptor ion channels may open (R). The (microscopic) rate constants for the 
mechanism are defined as follows: 

state number: 
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The open states, 1 and 2, constitute the subset d; so k, = 2.  When the agonist concentration 
(denoted X,) is low, sojourns in state 5 (T) will be long; so this will be defined as the sole 
member of the subset g (kg = 1). Open periods may be expected, in general, to be interrupted 
by short sojourns in the occupied but shut states, 3 and 4 (A,T and AT), which therefore 
constitute the subset (kB = 2). 

The matrix of transition rates, partitioned as in (1.6), is 

(4.2) 

The numerical values for the rate constants that will be used for this example have been 
chosen so that the predictions are similar, in most respects, to the observations described by 
Colquhoun & Sakmann (1981)~ who used suberyldicholine as agonist. However it should be 
emphasized that further experiments are necessary before the qualitative mechanism in (4.1) 
(and, a fortiori, the values for the rate constants) can be regarded as secure. The values are 
as follows. 

(1) First binding: k,, = 5 X 107 M - ~  S-l, k-I = 2000 S-l, and so the equilibrium constant 
is K, = 40 PM. The observations contain little information about k+, because of the low 
agonist concentration, and because the gaps between bursts are not interpretable as a result 
of there being several ion channels contributing to the observed record. However a rough 
guess can be made from the concentration of agonist required for a given current (number of 
open channels) at equilibrium. 

(2) Second binding to the shut conformation: k,, = 5 X 108 M - ~  S-l, k-, = 2000 S-l, and 
so the equilibrium constant is K, = 4 PM. Again the value for the association rate constant 
is somewhat arbitrary, but a rather fast value is needed to make q5, large enough relative to 
y5, (see (4.6) and (4.7) below). 

(3) Opening of the singly occupied state: P, = 15 S-l, a, = 3000 S-'. 

(4) Opening of the doubly bccupied state: P2 = 15000 S-l, a, = 500 S-l. 

(5) Binding to the open state. I t  follows from microscopic reversibility that the values 
already given imply an equilibrium constant of 0.66 nM. If we arbitrarily assume that the 
association rate constant, kT2, is the same as k+,, i.e. 5 X 108 M - ~  S-l, then the equilibrium 
constant implies that k?, = 0.33 S-l. Thus dissociation from the doubly occupied open form 
would be very slow (time constant 3 S). 

(6) Agonist concentration, X, = l00 nM; so k+,xA = 5 S-l and k+,xA = 50 S-l. At this very 
low agonist concentration, bursts of openings are well separated, and therefore clearly defined. 
Furthermore, at low agonist concentration the parameters (such as time constants and relative 
areas) of the observed distributions (of gap length etc.) often take on, to a good approximation, 
a simple physical significance which they will not, in general, have at higher concentrations. 

The equilibrium constants just given are not unlike those suggested by Dionne et al. (1978) 
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as a possible interpretation of their equilibrium experiments with carbachol, except that the 
binding affinity for carbachol was lower, and it appeared that carbachol could open, at most, 
around 50 % of the channels. According to the numbers just given, suberyldicholine appears 
to be a rather efficacious agonist in that it could, in principle, open a fraction /3,/(a2+P2), 
i.e. 96.8 %, of channels at high enough concentration. The equilibrium constant for opening 
when doubly liganded is P2/a2 = 15000/500 = 30, which is 6000 times greater than when 
singly liganded (Pl/a, = 0.005). I t  is intriguing to speculate that, if the same ratio held for 
unliganded channels, as in the Monod-Wyman-Changeux model, the probability of a channel 
opening in the absence of any agonist would be 0.005/6000 i.e. about one in a million, or 
about ten channels per endplate. 

(i) Equilibrium state occupancies 

The fractions of the system in each state at equilibrium are: pl(co) = 2.48 X 10-5, @,(m) = 

1.86 X 10-3 (so total fraction open is 1.89 X 10-3, of which 98.7% are doubly occupied), 

(ii) The Q and ll matrices 

From the numerical values just given, and (4.2), we have 

The diagonal elements give the mean lifetimes of single sojourns in each individual state as: 

state 1 (AR), 0.328 ms; 

2 (A2R), 1.997 ms; 

3 (A,T), 52.6 p ;  

4 (AT), 0.484 ms; 

5 (T), 100 ms. 

From (4.3) and (1.5), the transition probabilities, nij, are given by 

Thus, for example, a channel in state 4 (AT), has a 0.7 % chance that its next transition is to 
open (to state 1, AR), a 2.4% chance of binding another agonist molecule (transition to 
state 3, A,T), and a 96.9 % chance of losing its agonist molecule (transition to state 5, T). 

3 Vol. 300. B 
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(iii) The predicted noise spectrum 

The methods of Colquhoun & Hawkes (1977) allow us to predict that the spectral density 
function for fluctuations in the number of open channels should conqist of the sum of k - 1 = 4 
Lorentzian components with time constants that are the reciprocals of the eigenvalues of - Q. 
(The fifth eigenvalue is zero because Q is always singular.) These are 9.82 ms, 0.494 ms, 
0.323 ms and 51.5 p. The relative amplitudes of these components are, respectively, 100, 
0.0009, 0.046 and 0.011; thus only the first component with a time constant of 9.82 ms would 
be observable in practice. It will be shown below that this is close to the time constant of the 
slow component of the distribution of the burst length (as in the example given in Colquhoun 
& Hawkes 1977). 

(b) The start of a burst 

The probability that a burst starts in each open state is given by (3.2). In this mechanism 
there is only one state in d U L%' that is accessible from W (special case 3, 53a) ; so Qrb is the 
second row of GB& scaled to sum to unity. This gives the probability of a burst starting in the 
doubly liganded state, A,R (state 2), as 

Likewise the probability that a burst starts in the singly liganded state, AR (state l), is 

(C) The number of openings per burst 
From (1.25) we find 

[0.00721 0.0319 
G.""Gaw = 0.00154 0.7925 1 

Clearly most AI -+ L%' + AI transitions start and end in state 2 (A,R). The distribution of the 
number of openings per burst is the sum of two geometric distributions, as in (3.9). The prob- 
ability of there being r openings is 

with mean E(r) = 3.82. (4.10) 

The coefficients are given by (3.10), and p, and p,, the eigenvalues of (4.8), are 0.7926 and 
0.007 14 respectively. The second component dies out rapidly in this case. From (4.9) we find 
that 41.4% of bursts should have only one opening, 12.3% should have two openings, and 
1.9 % should have ten openings. The mean is 3.82 openings per burst. 

In  general, if a distribution that actually consists of the sum of two geometric distributions 
is fitted by a single geometric distribution with the same mean, it will appear that the obser- 
vations contain too many bursts with small and too many with large numbers of openings, but 
too few with intermediate numbers of openings. Deviations of this sort from a single geometric 
distribution were frequently observed by D. Colquhoun & B. Sakmann (unpublished results). 

The reasons for the shape of this distribution are made clearer by consideration of the distri- 
butions conditional on starting state, given by (3.13). These have, of course, the same values 
of p, and p, as above. But, for bursts that start in state l (AR), the coefficients are 0.00844 
and 0.952 respectively, and so the second component predominates; the mean is 1.16 openings 
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per burst, and most bursts that start in AR consist of a single sojourn in AR (as is shown by 
their mean length; see below). For bursts that start in state 2 (A,R) the coefficients are 0.208 
and - 0.001 87 respectively, and so the first component predominates; the mean is 4.82 openings 
per burst and, as is shown below, most bursts will, in this case, consist of oscillations between 
A2T and A,R. It  is clear from (4.5) that oscillations between AR and A,R will be rather rare 
in this example. 

(d) The burst length 

I t  follows from (3.17) that the p.d.f. of the burst length is the sum of four exponential terms, 
with rate constants that are the eigenvalues of - Q,,, i.e. the top left 4 X 4 section of (4.3). 
These, with their reciprocals, are : 

h, = 101.6 S-l, 7, = 9.84 ms; \ 
h, = 2013 S-,, 7, = 0.497 ms; 

h, = 3093 S-l, 7, = 0.323 ms; 
I 

Because the agonist concentration is so low, these are almost identical to the values expected 
(see above) for the noise spectrum. The p.d.f. of the burst length, the areas under each of the 
four components and the mean are: 

f (t) = 74.7 e-Alt +28.7 e-Aat + 774 e-A3t + 1.50 e-bt; 

area = 0.736 +0.014 +0.250 + 0.000 = 1.000; (4.12) 

mean = 7.33 ms. 

Only the first and third components are big enough to be easily observable; about three- 
quarters of the area is accounted for by the slow component (7, = 9.84 ms), and most of the 
rest by a faster component (7, = 0.323 ms). The physical interpretation of this result is, in 
this example, clear. The mean burst length is close to the mean number of openings per burst 
(3.82) times the overall mean length of an opening (1.88 ms; see table l) (plus 2.82 intraburst 
gaps of 57.6 p, though these contribute only a small amount to the burst length). The slow 
component (7, = 9.84 ms) corresponds approximately with the mean number of openings 
per burst given that the burst starts in state 2 (A2R), namely 4.82 (see above), multiplied by 
the corresponding open time, 2.00 ms (which is close to the mean lifetime of the doubly 
occupied open state, A,R; see (4.4) and table 1). Bursts that start in AR, on the other hand, 
will rarely have more than one opening (mean l.l6), with mean life that of AR, 0.328 ms 
(see (4.4)); this is close to the time constant, 0.323 ms, of the fast component of the burst 
distribution. In view of the simple physical interpretation that can be placed on the burst 
length distribution in this particular example, it is not surprising that the proportion of the 
area under the slow component of the distribution is close to the proportion of bursts that start 
in A,R (i.e. q5, = 0.725, from (4.6)). 

(e) The total open time per burst 

The eigenvalues of - Vdd (defined in (3.24)) are h, = 103.9 S-l (7, = 9.63 ms), and 
h, = 3028 S-l (7, = 0.330 ms). The p.d.f. of the total open time per burst, from (3.23), is 

f (t) = 76.3 e-"lt + 802 e-ht; 

area = 0.735+0.265 = 1.000; (4.13) 
mean = 7.17 ms. 

3-2 
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This distribution is similar to that of the total burst length (4.12), as might be expected from 
the shortness of the gaps within bursts in this example (see table 2). 

(f)  The total shut time per burst 

The eigenvalues of - WBB (defined in (3.36)) are h, = 1953 S-l (7, = 0.512 ms) and h, = 

4117 S-l (7, = 0.243 ms). The p.d.f. of the total duration of all gaps within a burst, for bursts 
that contain at least one gap, from (3.40), is 

f ( t )  = 246 e-"lt f 3598 e-h lt; 

area = O.l26+ 0.874 = 1.00; 

mean = 277 p. 

Multiplication of the mean by the probability that a burst contains at least one gap, i.e. 1 - 0.414 
(see above), gives the mean shut time for all bursts, from (3.42), as m = 162 p. This is the 
mean gap length, 57.6 ps (see table 2), multiplied by the mean number of gaps per burst, 
2.82 (see (4.10)). 

(g) The length of individual openings 

In the observations of Colquhoun & Sakmann (1981) a substantial proportion of gaps within 
bursts were too short to resolve; so the length of individual openings could not be measured 
satisfactorily. Nevertheless it is of interest to see what the predictions are in this example. 

All the distributions of open times to be discussed are the sum of two (k,) exponential 
components, with amplitudes denoted W,, W,, i.e. 

f (t) = w,e+lt + w,e-"lt. (4.15) 

This can, alternatively, be written in the form 

f (t) = Blhle-Alt + (1 -8,) h,e+lt, 

in which B, = w,/h, denotes the fraction of the area under the p.d.f. that is contributed by the 
slower (h,) component. The zmplitudes and areas differ from one distribution to another, 
but all of the distributions have the same rate constants, the eigenvalues of - Q,,: 

h, = 500.6 S-l (7, = 2.00 ms); 

h, = 3050 S-l (7, = 0.328 ms). 

In this case, because of the low agonist concentration and slow dissociation of agonist from A,R, 
these two time constants are very close to the mean lifetimes of states A,R and AR, respectively. 

Table l a gives the distributions and means of the p.d.f. of the kth opening in a burst with r 
openings, from (3.52) and (3.53). The distributions show the time symmetry discussed following 
(3.53). 

The distribution (3.57) of the length of the kth opening in a burst, regardless of the number 
of openings, is given in table l b. Note that, in both of these cases, bursts with few openings 
tend to have short openings; this is because, as already found, there is little interchange 
between AR and A,R and so bursts with few openings tend to consist of a single sojourn in 
AR, whereas bursts with many openings will usually be those that started in A,R. 

The rarity of interchange between AR and A,R during a single opening is reflected in dis- 
tributions that are conditional on the initial state. For example, table lc, d shows the distri- 
butions of the duration of single openings, regardless of position within the burst, given that 
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the opening occurs in a burst that started in AR (table Ic), or in state A2R (table Id). The 
former are, on average, shorter. These distributions are found by omission of from (3.60). 

Another, related, approach is to calculate the p.d.f. of the length of an opening (regardless 
of position in burst) conditional on the opening starting in a specified state. This can be done 
by omission of Qr, from (3.64). For openings that start in AR we find that the term with time 
constant 72 = 0.328 ms accounts for 98 of the area under the p.d.f., and the mean length of 
such openings is 0.361 ms, which is only slightly greater than the mean length, 0.328 ms, of 
a single sojourn in AR. And for openings that start in A2R the p.d.f. is very nearly a single 
exponeAtial with mean close to 7, = 2.00 ms, which is almost the same as the mean length 
of a single sojourn in A2R. 

(All the distributions have the same two rate constants, specified in (4.17). The contributions of each 
of these two components is specified here both in terms of their amplitudes, W ,  and W ,  (see (4.15)), and 
in terms of the relative area of the slow components, B, (see (4.16)).) 

amplitudes/s-l 
P 

r area, 8, W1 W2 

(a) The kth opening in a burst with r openings 
1 0.364 182 1941 

2 0.977 489 70.0 
2 0.977 489 70.0 

3 0.9 92 497 24.4 
3 1 .00 501 0.962 
3 0.992 497 24.4 

( b )  The kth opening in a burst (regardless of r) 

- 0.730 366 823 
- 0.995 498 15.1 

0.998 500 5.18 

( c )  Any opening in a burst that started in AR 
0.150 75.2 2592 

(d) Any opening in a burst that started in A2R 

0.999 500 3.86 

( e )  Overall distribution 
0.928 464 221 

The overall distribution of open time, from (3.60) or (3.64), is given in table l e ;  the mean, 
1.88 ms, is only slightly less than the mean lifetime of A2R, because the area under the slow 
(2 ms) component of the p.d.f. is 92.8% of the total area. This is close to the probability that 
any opening starts in A2R, which is given in @,. From (3.63), 

where 

In this case therefore @, = C0.074 0.9261. (4.20) 

The probability that any individual opening starts in A2R (0.926, from (4.20)) is greater than 
the probability that the first opening in burst starts in A2R (0.725, from (4.6)). This is because 
a burst must be preceded by a sojourn in state 5 (T), and so it is always necessary to go through 
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state AT (with the possibility of opening to AR) before a burst starts. O n  the other hand the 
second and subsequent openings in a burst may be preceded by gaps spent only in A,T. 

(h) The length of gaps within a burst 

All of the distributions, which are summarized in table 2, are the sums of two (kl) exponential 
components, of the form already specified in (4.15) and (4.16). 

All the distributions have the same rate constants, h,, h,, which are the eigenvalues of - QIA, 
namely - 

A, = 2053 S-l (7, = 0.487 ms), 

h, = 19012s-l (7, = 5 2 . 6 ~ ~ ) .  

I n  this example, because of the low agonist concentration, these time constants are close to the 
mean lifetimes of the two occupied but shut states, AT and A,T respectively (see (4.4)). 

(All distributions have the same two rate constants, given in (4.21). The contributions of each of these 
two components are specified here both in terms of their amplitudes, W ,  and W ,  (see (4.15)), and in 
terms of the relative area of the slow component, 0, (see (4.16)).) 

amplitudes/s-1 - 
area, 0, W 1  W 2  

(a) The kth gap in a burst with r openings 

0.041 84.8 18 227 

(b) The kth gap in a burst (regardless of r) 

0.022 44.8 18597 
0.009 18.1 18 845 
0.009 17.8 18 847 

(c) Any gap within a burst that started in AR 

0.183 376 15528 

(d) Any gap within a burst that started in A,R 
0.009 17.8 18 847 

(e) Overall distribution 

0.01 1 23.5 18 794 

The p.d.f. of the length of the kth gap in a burst with r openings from (3.69) is shown in 
table 2a. They show the time symmetry discussed earlier. The kth gap in a burst (table 26) 
also shows a slight tendency for gaps to be longer in bursts with few openings, because bursts 
with few openings will often be those that started in AR, and so, if they have a gap, it will usually 
be in AT. This is also shown by the distributions of the length of intraburst gaps (regardless 
of position in the burst), given that the gap is part of a burst that started in AR (table 2c) or 
a burst that started in A2R (table 2d).  The latter have gaps with mean length close to the mean 
life of a single sojourn in A2T, but the former have longer gaps on average. These distributions 
are found by omission of Qib from (3.75). 

The overall distribution of the length of gaps within bursts (table 2e) is dominated by the 
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fast component with time constant close to the mean lifetime of A,T, which accounts for 98.9 % 
of the area under the p.d.f. However, there is a small component (1.1 % of area) with a longer 
time constant, 0.487 ms, which is close to the mean lifetime of AT. A small component, quali- 
tatively resembling this, was observed by Colquhoun & Sakmann ( I  98 I ) ,  but it is not possible, 
at present, to be sure that it shouId be interpreted in the way just described. 

(i) The gabs between bursts 

The gaps between bursts could not be properly measured by Colquhoun & Sakmann (1981) 
because more than one ion channel contributed to their records. The gap of 300-1000 ms 
that was common in their experiments will therefore, in general, be shorter than the true gap 
between bursts (which, in this example, is predicted to be 3790 ms). 

The distribution, from (3.85), consist of five (kB+k,) exponential components. The first 
two (h,, h,) have rate constants that are eigenvalues of - QBa, which have already been 
given in (4.21). They are 

h, = 2053 S-l (7, = 0.487 ms), 

The other three components have rate constants that are the eigenvalues of -Q,,, where 
S = g U F, which are 

h, = 0.2639 S-l (7, = 3789 ms), 

h, = 2063 S-l (7, = 0.485 ms), l (4.22) 

h, = 19012 S-l (7, = 52.6 p ) .  

Because of the low agonist concentration h, and h, are nearly equal, as are h, and h,. These 
components nearly cancel in the overall p.d.f., which is 

fb(t) = - 66.2 e-hl - 52 975 echzt +0.264 e-h3 + 65.9 e-"l + 52 975 ech5 t '  } (4.23) 
mean = 3790 ms. 

Therefore the distribution is close to a single exponential distribution, consisting only of the 
h, term. 

The mean length of a gap between bursts is much longer than the mean length of a sojourn 
in g (state T), which, from (4.4), is only 100 ms. This is because there may be many occupan- 
cies, as long as they do not lead to opening, between bursts (see figure 1). Most of these will be 
single occupancies; from (4.5) it is seen that state AT has a 96.9 % chance of dissociating rather 
than opening or becoming doubly occupied. But, if double occupancy is attained, then, from 
(4.5), AzT has a 78.9 % chance of opening. 

( j )  The distribution of all shut times 

The distribution of all shut times, like that of gaps between bursts, could not be properly 
measured by Colquhoun & Sakmann (1981), because of the presence of more than one ion 
channel. 

The distribution, from (3.90), consists of k, = 3 exponential components with rate constants 
that are the eigenvalues, h,, h, and h,, of - Q,,, which have been given in (4.22). I t  is 

f,(t) = 0.069 13 e-h + 17.26 e-h + 13873 e-h t ;  

area = 0.2619 + 0.0084 + 0.7297 = 1.000; (4.24) 

mean = 992.7 ms. 
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This distribution can, as discussed at the end of $3, be expressed as a weighted combination 
of the distribution, fb(t), of gaps between bursts, (4.23), and of the overall distribution, f,(t), 
of gaps within bursts which, from table 2e, is 

fw(t) = 23.48 e-h lt + 18794 

area = 0.011 +0.989 = 1.000; 

mean = 57.6 ps. 

In this expression, h, and h, are the eigenvalues of - Q,, given in (4.21). Thus 

f,(t)  = Ofb(t) + ( l  -O)fw(t), (4.26) 

where, from (4.10), the probability that a gap is between, rather than within, bursts is 

B = I /E(r)  = 113.82 = 0.2619. 
Evaluation of (4.26) gives 

fs(t) = - 17.33 e-"lf - 13873 e-"lt 

+0.06913 e - b t t  17.26 e-ht + 13873 e-"lt 

+ 17.33 e-ht + 13873 e-bt. 

As expected, the terms in h,, h, cancel, leaving only those derived from Q,-,- that are identical 
with (4.24). 

(i) Inferences about bursts from the distri6ution of all shut times 

One would infer from the distributions of all shut times, (4.24), that the distributions of the 
lengths of gaps within bursts had time constants r4 = l /h4 = 0.485 ms and r5 = l lh ,  = 

52.6 ps. In this example these values are very close to the correct values, which are, from (4.25) 
and (4.21), r, = l l h ,  = 0.487 ms and r, = l l h ,  = 52.6 ps. Similarly one would infer from 
(4.24) that the mean length of the gap between bursts was r, = l /h, = 3789 ms, which is very 
close to the correct value, from (4.23), of 3790 ms. The fraction of all gaps that are between 
bursts would be inferred, from (4.24), to be the area, 0.2619, under the slowest (h,) com- 
ponent; in this example the result is again very close to the correct value given in (4.27). 
This is what would be expected, from (3.93) and (3.94), as a result of the fact that the distri- 
bution of the gap between bursts (4.23) is, in this example, a close approximation to a single 
exponential component, the coefficient for the h, term in (4.23) being 0.264 S-l which is close 
to h,. 

The very low agonist concentration in this particular example has ensured that the burst 
characteristics inferred from the distributions of all shut times are very close approximations 
to the true values. In fact, in this particular case the approximations remain quite adequate 
even with an agonist concentration sufficient to keep the channels open for 50% of the time. 
However, we cannot give general conditions that will ensure the validity of the approximation; 
numerical calculations of the sort given above may be necessary in each particular case. 
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5. THE A N A L Y S I S  OF C L U S T E R S  OF BURSTS  

(a) Basic definitions 

A procedure similar to that used for analysis of simple bursts will be followed; we now divide 
the k states in which the system can exist into four subsets, rather than the three subsets used 
previously. These are defined as follows. 

(1) Subsets &' (open states), 58 (short-lived shut states) and V (long-lived shut states) are 
defined exactly as before (5 l a). 

(2) Subset 9 comprises very long-lived shut states, kg in number, such that an entry into 
9 results in a shut period so long that it is deemed to be part of a gap between clusters. 

(3) As before, we define a number of subsets that result from pooling two or more of the 
above subsets into one, thus: 

& = &' U ('burst states'), 

9 = B U V ('gap between burst, within cluster, states'), 

9 = d U 9 U $? ('cluster states'), l (5.1) 
2' = V U 9 ('gap between cluster states'), and 

Y = 33' U V U 3 (all shut states). 

I n  practice the discrimination between gaps that are within bursts, those that are between 
bursts within a cluster, and those that are between clusters will be even more prone to error than 
the discrimination of simple bursts (discussed a t  the end of 5 l ) ,  but this will not be discussed 
further here. 

The grouping of bursts into clusters has been demonstrated by Sakmann et al. (1980). I n  
their experiments the agonist concentration was high; so the lifetime of vacant receptors ( T  
in (1.7) or (1.11)) would be short. Therefore sojourns in T, as well as those in the occupied 
but shut states (AT or A,T), would be classified as gaps within a burst; thus all of these states 
would be members of the subset a. The occurrence of bursts was attributed to the existence 
of a desensitized state or states (subset V) ; after fluctuating rapidly between vacant, occupied 
but shut, and open states for a while, the burst would be ended by transition into the relatively 
long-lived desensitized state. The occurrence of clusters was attributed to the existence of a 
second, very long-lived desensitized state or states (subset a), 
end of a cluster of bursts. 

The matrix of transition rates can now be partitioned thus: 

entry into which implied the 

(5.2) 

An example of the possible behaviour of the system is shown in figure 2, which is constructed 
like figure 1 except that it includes the new subset, 9, entry into which implies the end of a 
cluster. The terms used in this section are defined in figure 2. 
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gaps between bursts within cluster 

FIGURE 2. Diagrammatic representation of possible behaviour of a single ion channel, which has any mechanism 
that results in bursts of openings occurring in well defined clusters. The upper part shows transitions of the 
system between the four subsets of states defined at the beginning of $5.  These are the same as for figure 1, 
with the addition of a subset, $3, of shut states with lives so long that entry into $9 indicates the end of a 
cluster. The lower part shows the corresponding appearance of the single channel current (when it is assumed, 
if there is more than one open state, that all have the same conductance). Two clusters are shown: the first 
has three bursts (with three, two and two openings) ; the second has two bursts. 

(i) Changing subscripts 
( b )  Two approaches to clusters 

A considerable number of distributions can be found by a simple change of subscripts in 
the results already obtained for simple bursts in 9 8. There are two cases of interest, as follows. 

(1) The 'per cluster' distributions. Distributions such as that of cluster length, or total open 
time per cluster, can be found by treating the whole cluster as though it was a single burst 
and ignoring any structure within the cluster. This can be achieved by neglecting the dis- 
tinction between W and Vstates (which is, of course, like all the distinctions between subsets, 
to some extent arbitrary). So B in the results of $3  would be replaced by 9 = W U 'iP, and 
V in the results of 93 would be replaced by 9. 

In summary 
W +S, 

V -+ 9; J (5.3) 
SO & + g  and S + Y .  

(2) The 'per burst' distributions. Distributions such as that of the number of openings per 
burst, or of burst length (when they are averaged over position within the cluster) can be 
found by ignoring clustering. This is achieved by neglecting the distinction between V and 9 
states and replacing V in the results of 93 by &+ = V U 9. In summary 

V + 8 .  (5.4) 

(ii) Dejnition of new transition matrices 

Results which again bear an analogy with the results for bursts in 93, can be found by 
definition of new transition matrices by use of the principles in 92. For example, given that 
we start in one of the open (d') states, the probabilities that, after oscillation any number of 
times between d' and W and back (see (2.6)), we eventually reach V (directly from d', or via 
B )  will be given by the transition matrix Gdla)Q, defined as 

This is a 'burst transition matrix' that describes the transitions from the start of a burst to 
its end (including any silent period in W at the end). Similarly the gap between bursts (within 
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a cluster) may have (see figure 2) any number of transitions from V to a and back, before 
eventually reaching d, the start of the next burst; it is described by the transition matrix 

Thus the transition matrix (which has already been used in (3.88)), defined as 

describes the transitions from the start of one burst through to the start of the next burst in 
the same cluster. I t  can be used in the analysis of clusters in a manner rather analogous to the 
way that G,, G,, has been used to describe the transition from the start of one opening to 
the start of the next opening in the same burst. 

(c) The start and end of a cluster 

A cluster starts (see figurg 2) in one of the open (d) states; so we shall, as before, need the 
probabilities that the cluster starts (i.e. the first opening of the first burst in the cluster starts) 
in each d state, if there is more than one. These probabilities will be denoted! by @c, a l X kd 
vector (the subscript c stands for cluster); they can be found simply by treating the whole 
cluster as though it were one burst; so the subscript changes in (5.3) are applied to the corre- 
sponding initial vector for a burst ab (given in (3.2)). The result is 

Again the denominator is just the sum of the elements in the numerator, and so the prob- 
abilities in @, sum to unity. The special cases, in which @, can be simplified, are direct analogues 
of those given for eb in $ 3 ~ .  The same subscript changes in (3.3) give the vector describing the 
end of a cluster as 

The characteristics of a burst, including its initial vector, will depend, in general, on its 
position within a cluster. Examples are given below of distributions derived for the mth burst 
in a cluster with n bursts (see, for example, (5.21) and (5.66)). However, it seems unlikely, 
at present, that enough clusters could be observed for such distributions to be tested; in practice 
the distributions that are averaged over position within the cluster are likely to be more useful. 
When this is done, the initial vector for a burst can be obtained from (3.2) by the subscript 
change in (5.4), giving 

@' - P.w(m) (Q .waG~d  + 02,) (5.10) 
" - P A ~ )  (Qsw Gad + Q,,) U,' 

The relation between @, and @L is given in Appendix 2 (A 2.15). Similarly the end vector for 
a burst becomes, from (3.3), 

4 = (G,, G,, + G,,) U,. (5.1 1) 

We note here, for later use, the identities (see Appendix 2) 

( I  - Z,,) -l (I - G,, G,,) -l ec = U, (5.13) 
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and ( I  - G,, G,,) -l ek = U,. 

These results are analogues of (3.4) that are relevant to cluster analysis. 

(d) The number of openings per cluster 

This distribution follows directly from ( 3 4 ,  by the subscript changes in (5.3). This gives 
the probability of W openings per cluster as 

with mean E ( w )  = @,(I- G,,G,)-lu,. (5.16) 

(e) The number of bursts per cluster 

The transition matrix, Z,, = G,(,),G,(,),, that describes the routes from the start of 
one burst to the start of the next has been found in (5.5)-(5.7). Thus, from the principles in 
$2, 222 describes transitions up to the start of the nth burst, in which there may be any 
number of transitions between d and 33 before the nth burst ends. The probability of there 
being n bursts in a cluster is therefore 

The latter form follows from (5.13), and bears a close analogy with (3.5) and (5.15). The mean 
number of bursts per cluster is 

The latter form is the ratio of two scalars, the rate of transition into at from 2 = '2? U 9, 
relative to that from 9. 

( f )  The number of openings per burst 

In general, the number of openings per burst will depend on the position of the burst within 
the cluster. By inspection of the routes through a cluster we can, as before, write the probability 
of there being r openings in the mth burst in a cluster with n bursts as 

P@; m, n) 
n-m-l 

= @czzAG,, GB,)~-~ (G,, G,, + G,,) G,(,),Z,, - G,, - 1 c / 7  m < n 

= Z ( G  G ) - e / P ( n )  m = n 

= @ c Z ( G G ) r - l ( I - G G ) Z ( I - G G ) - l e c / P ( n ) ,  m < n ,  (5.21) 

where P(n) is a probability that a cluster contains n bursts, from (5.18). The first two forms 
(respectively for all bursts but the last, and for the last burst of a cluster) are, as in (3.49)- 
(3.50), those with the most obvious derivation. However, the last form subsumes both the 
preceding results. The mean is 
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To average over the position of the burst within the cluster we find 

When correctly normalized to unit sum, this gives the overall probability of r openings per 
burst as 

This result looks much more complicated than that previously found for bursts in (3.5). 
However substitution from (5.13), (5.14) and (A 2.15) into (5.23) shows that the distribution 
can be written simply as 

P(r ) = @;(Gd, G,)'-le;, (5.24) 

where @, and ek were defined in (5.10) and (5.1 1). This is exactly analogous to (3.5), from 
which it could have been obtained directly with the help of (5.4). The corresponding mean 
number of openings per burst, which could similarly be obtained directly from (3.7), is 

E(r)  = @;(I-GdaGad)-lud. (5.25) 

(g) The cluster length 

The Laplace transform of the required p.d.f. can be written down in the same way as the 
equivalent result for bursts, (3.16), if we define 

in which the terms are defined as in (5.5)-(5.7) except that every transition probability matrix, 
G, in the definitions is replaced by G* (S). The result therefore describes the time interval from 
the start of one burst to the start of the next. There may be any number of bursts per cluster; 
so, by direct analogy with (3.16) and (5. IT), the required result is 

f *(S) = @c[I-~5,(s)l-' [I- G5a(s) G&&)]-' [G5,(4 G, + G5&l U,. (5.27) 

This distribution also follows directly from the corresponding burst result, (3.17), by means 
of the subscript changes in (5.3). Thus the p.d.f. is 

f p) = @~[~99(~) ldd  ( -  Qdd) %a (5.28) 

This involves the subsection of P,,(t) = exp(Qggt) that corresponds to the open (d) states. 
The distribution can be expressed as the sum of k, = k, + ka + kW exponential terms, as 
described in (1.29)-(1.33) and (3.17). The mean cluster length, from (3.19) and (5.3), is 

This is, as expected, the sum of the mean total burst time per cluster, and the mean total gap 
between burst time per cluster, which are derived below, in (5.75) and (5.78). 

(h) The total open time per cluster 

From (3.23), (3.24) and (5.3), the distribution of the total open time per cluster is 

f (t) = @C exP ( -  Yddt) ( -  CM) U&+ (5.30) 
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where V>, = Q& + Q,, G,. (5.31) 

The mean open time per cluster, from (3.26) and (5.3), is 

If there is only one open state, the distribution becomes a simple exponential with mean 
(see (3.31), (5.3) and (5.12)) 

m = - I/V>, (5.33) 

= (mean life in d ) / e c  (5.34) 

Thus, as for bursts, if there is only one direct route from d to 9, with rate a say, so that 
Q,,u, = a, then the total open time per cluster will be less than l/a to an extent dependent 
on the shutting rate ( d  to 9) via P. It  will equal l/a if shutting via S is impossible. 

(i) The total shut time per cluster 

This can be found directly from the corresponding result for bursts, (3.38), by the substi- 
tutions in (5.3). The p.d.f. for the total shut time per burst is therefore 

The interpretation of the S(t) term in (5.36) is exactly like that discussed after (3.38). The 
distribution conditional on the cluster containing at least one shut period (two openings) is, 
from (3.39) and (3.40), 

where, from (3.6) or (5.15) and (5.3), the probability of getting at least two openings in a 
cluster is 

P ( w  2 2) = @,G,,G,u,. (5.39) 

The means corresponding to (5.36) and (5.38) are 

and 
respectively. 

m' = m / P ( w  2 2) 

( j )  The length of individual openings 

(i) The vth opening is a cluster with W openings 

The p.d.f. is the direct analogue of the results for bursts, (3.52), found from (5.3) as 

where P(w), the probability of W openings per cluster, is given by (5.15). 
The mean is 

m = @ c ( G , ~  G,,)"-' ( - Q2L) (G,, G,,)w-VeclP(w). (5.43) 
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(ii) The kth opening of a burst with r openings, that is the mth burst in a cluster of n bursts 

Application of the usual principles gives the p.d.f. as 

where the denominator comes from (5.18) and (5.21) 

(iii) The kth opening in a burst with r openings 

If we average over position in the cluster (m, n) by summing the numerator of (5.44) as in 
(5.23), the result can be written, by use of (5.13), (5.14) and (A 2.15), as 

where P(r) is given by (5.24). The latter form follows directly from the result for bursts, (3.52), 
by use of (5.4). The mean is therefore 

(iv) The overall distribution of open lifetime 

If the p.d.f. in (5.42) is averaged over position in the cluster, by direct analogy with (3.59)~ 
the overall p.d.f. for the length of an opening is found as 

where the mean number of openings per cluster, E(w), is given in (5.16). The relation between 
@, and @; is such that, as expected from (3.60), this can be written as 

where E(r), the mean number of openings per burst, is given by (5.25). The simplest version 
of the overall open time distribution is, not surprisingly, that found by using the initial vector 
appropriate to an individual opening. That is, from Colquhoun & Hawkes (1977), and by 
analogy with (3.63), 

@L = P F ( ~ )  QF&/P.T(~) Q F ~ U ~ ,  (5.49) 

where F = 98 U g U 93 is the set of all shut states. With this definition we obtain (see (A 2.19)) 
the third form of the p.d.f. as 

f (4 = @b P,, (4 ( - Q,,) U, (5.50) 

with mean m = @b(-Q22)ud. (5.51) 

These results are exactly analogous to (3.64) and (3.65). 
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(k) All gaps within a cluster 

(i) The vth gap in a cluster with W openings 

The p.d.f. follows directly from the analogous result for bursts, (3.69), by the substitutions 
in (5.3), giving 

(ii) Overall distribution of gaps within a cluster 

If the p.d.f. in (5.52) is averaged over position in the cluster in a way exactly analogous to 
(3.74), the result is 

f (t) = @ J I -  G,.F G9dI-l G,, P.F.F(~) ( - Q99) GP&~I[E(w) U 11. (5.53) 

This is analogous to (3.75) ; the denominator, the mean number of gaps per cluster, is given in 
(5.16). The mean length of all gaps within clusters is 

(l) Gaps between bursts within a cluster 

(i) The mth gap between bursts in a cluster with n bursts 

The Laplace transform of the p.d.f. follows from the principles in $ 2  and the start of this 
section. I t  is 

where the probability of n bursts per cluster is given by (5.18), and G&,(s) is defined as in 
(5.6) except that all the G values are replaced by G*(s). 

(ii) Overall distribution of gaps between bursts within clusters 

We average over position within the cluster, as before, by finding 

m n-l  m 

C ~f; ,n(s).p(n) = B g fZn(s).P(n), 

where f:,,(s) is given by (5.55). This, with (5.13), gives 

where E(n) - l, the mean number of gaps between bursts per cluster, is given by (5.19). The 
inverse transform of (5.57), the required p.d.f., can be shown to be 

I t  is interesting that this result, in the form given in (5.58) and (5.59), is actually identical to 
the distribution of gaps between bursts derived in (3.84) and (3.85), before the subset 9 was 
introduced. The mean is thus given by (3.86) with (5.59). 



B U R S T S  O F  I O N  C H A N N E L  O P E N I N G S  49 

(m) Caps between clusters 

The distribution of the gaps between clusters follows directly from the result for bursts, (3.85), 
by the substitution in (5.3). The result is 

(n) All shut times 

Again the distribution of all shut times follows from (3.90) and (5.3), which give 

with mean 

(0) The burst length 

(i) The mth burst in a cluster with n bursts 

For all bursts but the last in the cluster, the Laplace transform for the length of the mth 
burst is (compare with (5.21) and (3.49)) 

n-m-l f * (S) = @,~22l[I - G2d.J) G~& (s ) I  -l [G~,(s) G,%? + G%s)I GV(,),Z,, 

X (I - G,, G,,)-leC/P(n), m < n. (5.64) 

For the last burst in the cluster, which, unlike the others, may end with a direct transition to 9, 

f * (S) = @cZz2[Z - G$,(s) Gz,(s)] - l [G~,(s) G,,, + G&(s)] u,/P(n), m = n. (5.65) 

As in the analogous case for bursts, (3.49)-(3.53), both of the above results can be subsumed, 
from (5.5) and (5.9), in the single result 

X (I- G,,G,,)-leC/P(n), m n. (5.66) 
(ii) The overall distribution of burst length 

When (5.66) is averaged over position within the cluster, in a way analogous to (5.23), the 
result, when correctly normalized, becomes 

f * (S) = @ c ( I  - Zdd)  -l [I - G2,N G;d(s)I-l ck!z4s) ( - Q,&) (1- Gd, Gad) u,/E(n), 
(5.67) 

where E(n), the mean number of bursts per cluster, is given by (5.19). With the help of (5. IO), 
(5.1 l), (5.14) and (A 2.15), this can be written in the alternative form 

This is, as expected, simply the analogue of (3.16) found by the substitution in (5.4). The 
inverse, the required overall burst letlgth p.d.f. similarly follows directly from (5.68), or from 
(3.17) and (5.4), and is f (4 = @L[P88(t)ldd ( - Qdd)  4 (5.69) 

4 Vol. 300. B 
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The mean, from (3. lg), is 

(p) Other overall distributions of burst characteristics 

A number of other characteristics of bursts, when averaged over the position of the burst 
within the cluster, can be found directly from the earlier results for bursts, in 53, through 
(5.4), i.e. by making the substitutions '3? -t @, and hence @,, -+ @g and e,, -t ek. These include: 
(a) the length of the kth gap in a burst with r openings; (6) the length of the kth gap within 
a burst; (c) the overall distribution of gaps within bursts; (d) the total gap time per burst; 
(e) the preceding four sorts of distributions, but for open rather than gap times; (f) the 
distribution of all gaps between bursts, including those in 9, from (3.82)-(3.87). 

(g) The total burst time per cluster 

The Laplace transform of the p.d.f. of total length of time per cluster that is occupied by 
bursts can be found by putting s = 0 in those terms of (5.27) that correspond with the gaps 
between bursts. The result is 

where we define the appropriate modification of (5.7) and (5.26) as 

The inverse of (5.71), which gives the required p.d.f., can be shown to be 

where we define 

This result bears a close analom to the result for the total open time per burst given in (3.23)- 
(3.24). The mean burst time per cluster can be written as 

This is, of course, the mean number of bursts per cluster, from (5.19), multiplied by the overall 
mean burst length, from (5.70). 

(r) The total gap between burst time per cluster 

As in the last section, we set s = 0 in those terms in (5.27) the duration of which is irrelevant, 
i.e. in this case the periods spent in bursts. The result is 

where the appropriate variant of (5.7), (5.26) and (5.72) is defined as 
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To test experimentally any postulated mechanism of operation of ion channels, it is necessary 
to be able to calculate the channel behaviour that is predicted by the putative mechanism, so 
that this prediction can be compared with the experimental observations. For the simplest 
mechanisms, such as the agonist mechanism in (1.7) and the channel block mechanism in (1.9), 
explicit algebraic solutions can be written down fairly easily. But these mechanisms have only 
three kinetically distinguishable states and so they predict that not more than two components 
will be visible in noise and relaxation experiments, and that distributions of, for example, the 
duration of single channel open times, or of shut times, will have no more than two exponential 
components. However, it has already been observed (see, for example: Sakmann et al. 1980; 
Colquhoun & Sakmann 1981) that there are in some cases at least three components in the 
distribution of shut times. Mechanisms with more than three states must obviously be postu- 
lated in such cases (e.g. agonist mechanisms like (1.11), or mechanisms for desensitization and 
for the effect of drugs on desensitization). Such mechanisms can be tested experimentally 
only with the aid of results such as those given in this paper. These results provide a method 
for making numerical predictions of the expected behaviour of single ion channels for any 
mechanism, as long as the system is at equilibrium. Because the results are general, only one 
computer program need be written; numerical calculations can then be made for any mecha- 
nism if we specify (a) the appropriate set of transition rates between the various states in the 
mechanism (the Q matrix), and (6) the postulated subdivision of these states into the subsets 
defined at the beginning of $$l and 5 .  Furthermore the only complicated parts of such a 
program (subroutines for finding eigenvalues and eigenvectors, and for matrix inversion) are 
all readily available in standard libraries. 

A few examples will now be given of the ways in which the results given in this paper can 
be used to distinguish between various possible mechanisms. 

(a) Inferences from the number of components 

If bursts are visible, then there must be at least three subsets of states; so the total number 
of states must be at least three. Similarly, if it is possible unambiguously to distinguish clusters 
of bursts, there must be at least four states altogether. 

Some conclusions can be drawn directly from the number of components that are found in 
distributions. For example the number of components in the distributions of the number of 
openings per burst, of open times'and of total open time per burst are all predicted to be equal 
to the number of open states (k,). Therefore the number of open states must be at least as 
large as the number of components observed (which was two in the experiments of Colquhoun 
& Sakmann (1981) and of Cull-Candy & Parker (1982)). Of course some components might 
remain experimentally unresolved so that k, could always be greater than the number of 
observed components. Furthermore, the conclusion depends on the assumptions (a) of equili- 
brium etc. (given at the start of the paper), (b) that the observations contain signals from only 
one sort of channel, and (c) that the distribution of, for example, open times is really that of 
single openings, i.e. that these openings do not contain short, incompletely resolved, shut periods 
(the distribution of the total open time per burst will obviously be a lot less sensitive to errors 
of this sort than is the distribution of individual open lifetimes; see Hawkes & Colquhoun 
1983). Similar minimum values for the number of states in other subsets can be made from the 

4-2 
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number of components in other burst or cluster distributions. For example, the observation 
by Colquhoun & Sakmann (1981) of two exponential components in the distribution of the 
durations of the gaps within bursts suggests that the subset 28 must contain at least two states. 
These two states are, of course, not necessarily those postulated in (1.11); the slower (and 
much smaller) component that Colquhoun & Sakmann found could, for example, represent 
channel block by the agonist, though the evidence mentioned below suggests that the faster 
component cannot be attributed to channel block. 

Another example is provided by the number of components in the distribution of the burst 
length. Colquhoun & Sakmann (1981) were able to resolve two exponential components; so 
the number of burst states (kd + kB) must be at least two (given the assumptions listed above), 
The number of burst states is two for the simplest agonist mechanism (1.7), but it is easily 
shown (see, for example, Colquhoun & Hawkes 1981, p. 231) that no reasonable parameters 
can produce a fast component nearly as large as that observed. The mechanism in 94 has four 
burst states; and so it is also compatible with the observations, especially since the numerical 
calculations in 5 4 show that only two of the four components are predicted to be large enough 
to be observable. 

( b )  Inferences from the time spent in a single state or a set of states 

The mean lifetime of a single state is simply the reciprocal of the sum of rate constants 
leading away from that state (i.e. the reciprocal of the appropriate diagonal element of - Q). 
Thus anything that affects any of these rate constants will alter the lifetime. For example if 
there is only one open state, and addition of a drug is found to shorten the open lifetime (such 
that the reciprocal lifetime is linearly related to its concentration), this suggests that association 
of the drug with the open state causes a departure from the open state. This is what is seen with 
channel-blocking drugs (see, for example: Neher & Steinbach 1978; Ogden et al. 1981). 
Conversely, if the lifetime of single openings is found to be independent of the concentration 
of a Iigand then none of the shutting routes can involve association with that ligand; for 
example Sakmann et al. (1980) found that the mean open time was independent of agonist 
concentration, which suggested that the bursts that they observed were not a result of ion 
channel block by the agonist (see also 93a). 

More generally, the lifetime of a sojourn in any specified set of states is given by (3.63)- 
(3.65) (for the set d ;  the same relations hold if any other subset is substituted for d, and its 
complement substituted for 9). The rate constants (h,) for the distribution depend not only on 
the transition rates out of the subset (e.g. those in Q&,-), but also on transition rates within 
the subset (e.g. in QC&&). In addition the weights, or relative areas, of the components of the 
distribution will depend on the initial vector, i.e. they will depend, in general (but see §3a), 
on the transition rates into the specified subset (e.g. in Q,-&) and on the equilibrium occupancies 
of states not in this subset (e.g. in p,-(m)). The only transition rates not involved in the dis- 
tribution are those between states that are not part of the specified subset (e.g. those in Q,-,-). 
The example in $4  has two open states (AR, A,R) in d. In this case the preceding generaliz- 
ations show that the rate constants for the distribution of the open lifetime depend on (see 
(4.1) and (4.2)) the values of a,, a,, kT2, xA and kT2. The relative area of the components 
depends, in addition, on P,, P,, k-, and k,, (see (4.2) and (4.18)). Anything that alters any 
of these will alter the distribution of open lifetimes (e.g. change in agonist concentration, 
effect of membrane potential on a, or a,). Note that, although no channel block is involved 
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in this example, the mean open lifetime is expected to depend on agonist concentration to 
some extent. The situation is sufficiently complicated that numerical calculations may be 
needed to predict the nature of this dependence. For example, if the agonist concentration is 
increased from 0.1 to 2.5 PM for the example in $4, then k+,x, is increased from 50 to 1250 S-l, 

and the lifetime of state AR is reduced to 0.235 ms. The fast rate of the overall open time 
distribution is speeded up (to 4250.2 S-'), but this component makes little contribution to the 
distribution (only 0.2% of the area), because at the higher agonist concentration an opening 
is almost certain to start in A,R rather than AR ($, = 0.997), and so the mean open time 
shows only a slight increase, from 1.88 to very nearly 2 ms. 

( C )  Inferences from the number of openings per burst 

Colquhoun & Sakmann (1981) measured bursts of openings produced by low concentra- 
tions of suberyldicholine. They found that the mean number of gaps per burst was little 
different whether 0.02 or 0.1 PM suberyldicholine was used. This was taken as evidence against 
the burst behaviour being caused by channel block by the agonist molecules; the simple channel 
block mechanism (1.9) would predict a fivefold increase in the mean number of gaps per burst 
in this experiment (see (3. l5)), whereas the simple agonist mechanism, (1.7), predicts no change 
with concentration (the mean number of gaps per burst being /3/k-, in this case). However, 
inference is not quite so simple when more complex mechanisms are considered. The agonist 
mechanism (and parameter values) discussed in $ 4  involves no channel block, but it never- 
theless (unlike the simple mechanism in (1.7)) predicts an increase in the number of gaps per 
burst with agonist concentration. This happens because, at high agonist concentrations, the 
proportion of bursts that start in A2R rather than AR will be increased, and because of the 
related fact that at higher concentrations a channel in state AT will have a greater chance of 
rebinding a second molecule (so that the burst will probably continue), rather than losing its 
agonist (so that the burst ends). The magnitude of this effect is most easily checked by numerical 
calculation, which shows, in this case, that the expected increase in the number of gaps per 
burst with concentration is much less than would be predicted for a simple channel-blocking 
mechanism; however, the predicted increase (1.3- to 2-fold) is, if anything, greater than that 
observed by Colquhoun & Sakmann (1981). 

( d )  Inferences from the total open time per burst 

The arguments leading to (3.30)-(3.33) show that measurement of the total open time per 
burst can be informative, particularly if there is (as in the following examples) only one open 
state. Such arguments have been particularly useful in the analysis of ion channel blockage 
(Neher & Steinbach 1978; Ogden et al. 1983; Neher 1983). Suppose, for example, that the 
open state is the last of the sequence of states, and the gap within burst states are 'proximal' 
to it, so that subsets are connected thus: V-93-d. We denote the rate of transition out of d 
as a. Then clearly the mean length of every opening in the burst must be lla, and so tht average 
total open time per burst must be greater than lla. This is so for the simple agonist mecha- 
nism (1.7). 

On the other hand, suppose that the gap within burst states are distal to the open state, i.e. 
V-d-g. Then the argument leading to (3.33) shows that in this case the total open time per 
burst must be exactly l/a. This result was observed by Neher & Steinbach (1978), who found 
that the channel-blocking drug QX222 produces extended bursts of openings, but that on 
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average the total open time per burst was close to the mean open time (lla) observed in the 
absence of blocker. This result suggests that the blocked states are distal to the open state, and 
that blocked states cannot shut (i.e. reach V) except by going through the open state. If there 
were a route from B to V that did not go through the open state (for example, a route via a 
desensitized state) then (3.32) would imply that the total open time per burst would be less 
than lla. Such an effect has been observed by Neher (1983) with higher concentrations of a 
channel-blocking antagonist. 

APPENDIX 1. SOME U S E F U L  RESULTS FOR A N A L Y S I S  O F  B U R S T S  

(a) Miscellaneous results 

We first note two standard results which are used repeatedly; they are close analogues of the 
corresponding scalar results. For any matrix H with eigenvalues, hi, such that all l hi[ < l, 

m a, 

C Hr = (I-H)-1 and p = ( I -H)- lHY (A 1.1) 
r = O  r = l  

m CO 

rHr = H(I-H)-2 and 2 THY-1 = (I - H)-2. (A 1.2) 
r = l  r = l  

Next we note that, because the rows of Q sum to zero, we can obtain, from the partitioned 
form of Q given in ( l . G ) ,  

Q,, U, + Q,BUB + Q,, U, = 0, (A 1.3) 

If (A 1.3) is multiplied by - Q25, and (A 1.4) is multiplied by - Q,&, we get, from (1.25), 

If (A 1.7) is premultiplied by G,,, and added to (A 1.6), we obtain 

(G,, G,, + G,,) U V  = ( I - Gd, Gad) U,, 

which proves (3.4). If (A 1.6) is premultiplied by G,, and added to (A 1.7), we similarly 

(b) The relation between Qi, and Qib 

I t  has been pointed out ($3g, 4.6, 4.7, 4.20) that the probabilities that any individual 
opening starts in a given d state are given by Qio, defined in (3.63), and that these are not the 
same, in general, as the probabilities that the first opening in a burst starts in a given at' state. 
The latter are given by (3.2). The former were used by Colquhoun & Hawkes (1981). The 
relation between these initial vectors is found as follows. First we define symbols for the numera- 
tors: thus, from (3.63) we can write 

Qio = YoI~ou,, (A 1.10) 
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where we define, for brevity, 

PO = pSb)  Q, = P,W Q1,+~&4 QV&. (A 1.11) 

Similarly, from (3.2), @b = y b /  Ybud, (A 1.12) 

where Yb = p v ( a )  (Qq1 Gad  + Qv,). (A 1.13) 

Now note that the rate of change of state occupancy is given (Colquhoun & Hawkes 1977, 
equation (22)) by 

dp(t)/dt = PO) Q; 

so in the steady-state P(W) Q = 0. (A 1.15) 

When Q is partitioned as in (1.6) this relation implies that 

Similarly, if Q is partitioned in the form 

then (A l. 15) implies that 

If (A 1.17) is postmultiplied by GB,, and the result added to (A 1.16), we obtain 

P ~ ( w )  (Q&& + Q&BGa&) +Pye(a) (Q1d + Q11Gsd) + p e ( a )  (Qv& + QvsGad)  = 0- 
(A 1.20) 

Now, from (1.25), the central term is zero, and so, from (A 1. l3), this becomes 

and hence 

which is the relation required for derivation of (3.64). 

( c )  Inversion of a partitioned matrix 

I t  will be useful, for example in the inversion of (3.16), to note the following standard result. 
We define a general partitioned matrix 

and its inverse N = M-l 
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say. As long as MA, and MBB are not singular, consideration of the relation M N  = I leads 
to the following form for the inverse of M: 

where we define (A 1.27) 

(i) Application to the distribution of burst length 
i 

First we note that the Laplace transform of this distribution, given in (3.16), can be written, 
from (1.21) and (3.3) as, 

f * (S) = @b [I- (S) (S) 1-l (S) ( - Q,,) eb. (A 1.29) 

Next we note that, in partitioned form, we can write 

The inverse of this, which is (see (1.17)) P:,(s), can also be written in partitioned form as 

If (A 1.30) is identified with (A 1.25), then its inverse, (A 1.31), is given by (A 1.26); so we 
find 

[P%s)Idd = X~ = [z-G21(s) G&(s)1-1p2d(s). (A 1.32) 

Insertion of this result into (A 1.29) gives a form that inverts directly to give the p.d.f. in (3.17). 

A P P E N D I X  2. SOME U S E F U L  R E S U L T S  F O R  A N A L Y S I S  O F  C L U S T E R S  

(a) Miscellaneous results 

Since, in (&l) ,  we define 9 = 33 U %, Q can be partitioned as 

Proceeding by analogy with (A 1.3)-(A 1.7) we find, from the fact that the row sums of Q are 
zero, 

G,.&, + G,,% = U,, (A 2.2) 

GFdud + G,-,u, = U,-. 

If (A 2.3) is premultiplied by G,,, and added to (A 2.2), we find 

e, = (G,,Gm+Gzm)% = (I-G,&,-,)U,, (A 2.4) 

which proves (5.12). 



BURSTS OF I O N  C H A N N E L  O P E N I N G S  57 

Similar treatment of Q partitioned in the form 

shows that 4 = (G,, GB, + G,,) UX = (I - G,, GM) U,, (A 2.6) 

as stated in (5.14). 
To express results that involve F in terms of 93 and V, we need to obtain an expression for 

Q,>. The general method in (A 1.25)-(A 1.28) can be applied to the partitioned form of 
Q,, to give 

Also, in partitioned form, we can write 

Combination of (A 2.7)-(A 2.9) allows G,, G,, to be written in terms of&, L%' and %' only. 
If this expansion is compared with that found by multiplying out the last three factors in the 
definition of Z,,, i.e., from (5.5)-(5.7), 

shows that Z,, = ( I  - G s a  G,,) -l (G,, G,& - G,, GB,) - (A 2.12) 

Thus (I-Zdd)-' = (Z-GdFG9d)-1(I- GdaGgd). (A 2.13) 

This result, with (5.12), proves (5.13). 

(6) The relation between the various initial vectors 

The steady state condition, p (m)  Q = 0 (see (A 1.15)), can be applied to Q, partitioned 
as in ( 5 4 ,  (A 2. l) and (A 2.5) in a way exactly analogous to (A 1.16)-(A l .  19). After some 
manipulation it is found that this implies that 

This result, together with the definitions of @, and @L in (5.8) and (5.10), shows that 

where E(n),  the mean number of bursts per cluster, was given in (5.19). 
Similar application of the steady state result, p(m) Q = 0, to Q partitioned as 
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gives P& ( m )  Qdd  + P . T ( ~ )  Q r d  = 0. 

This result, with the previous ones, shows that 

P r ( a >  Qrd = P A ~ )  (Q.pd + QH~GAW)  ( 1 -  G ~ . u A  Gad)-'. 

Thus, from (5.10) and (5.49) 

@ = @;(l-  G,, G ,d) - l /E(r ) ,  @,, = 
@ , ( I -  Gd.98 G@,)-lud 

where E(r),  the overall mean number of openings per burst, is given in (5.25). 
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